Author: Alice Roberts

Transporting carbon – How to safely move CO2 from the atmosphere to permanent storage

Key points

  • Carbon capture usage and storage (CCUS) offers a unique opportunity to capture and store the UK’s emissions and help the country reach its climate goals.
  • Carbon dioxide (CO2) can be stored in geological reservoirs under the North Sea, but getting it from source to storage will need a large and safe CO2 transportation network.
  • The UK already has a long history and extensive infrastructure for transporting gas across the country for heating, cooking and power generation.
  • This provides a foundation of knowledge and experience on which to build a network to transport CO2.

Across the length of the UK is an underground network similar to the trainlines and roadways that crisscross the country above ground. These pipes aren’t carrying water or broadband, but gas. Natural gas is a cornerstone of the UK’s energy, powering our heating, cooking and electricity generation. But like the country’s energy network, the need to reduce emissions and meet the UK’s target of net zero emissions by 2050 is set to change this.

Today, this network of pipes takes fossil fuels from underground formations deep beneath the North Sea bed and distributes it around the UK to be burned – producing emissions. A similar system of subterranean pipelines could soon be used to transport captured emissions, such as CO2, away from industrial clusters around factories and power stations, locking them away underground, permanently and safely.

Conveyer system at Drax Power Station transporting sustainable wood pellets

The rise of CCUS technology is the driving force behind CO2 transportation. The process captures CO2 from emissions sources and transports it to sites such as deep natural storage enclaves far below the seabed.

Bioenergy with carbon capture and storage (BECCS) takes this a step further. BECCS uses sustainable biomass to generate renewable electricity. This biomass comes from sources, such as forest residues or agricultural waste products, which remove CO2 from the atmosphere as they grow. Atmospheric COreleased in the combustion of the biomass is then captured, transported and stored at sites such as deep geological formations.

Across the whole BECCS process, CO2 has gone from the atmosphere to being permanently trapped away, reducing the overall amount of CO2 in the atmosphere and delivering what’s known as negative emissions.

BECCS is a crucial technology for reaching net zero emissions by 2050, but how can we ensure the CO2 is safely transported from the emissions source to storage sites?

Moving gases around safely

Moving gases of any kind through pipelines is all about pressure. Gases always travel from areas of high pressure to areas of low pressure. By compressing gas to a high pressure, it allows it to flow to other locations. Compressor stations along a gas pipeline help to maintain right the pressure, while metering stations check pressure levels and look out for leaks.

The greater the pressure difference between two points, the faster gases will flow. In the case of CO2, high absolute pressures also cause it to become what’s known as a supercritical fluid. This means it has the density of a liquid but the viscosity of a gas, properties that make it easier to transport through long pipelines.

Since 1967 when North Sea natural gas first arrived in the UK, our natural gas transmission network has expanded considerably, and is today made up of almost 290,000 km of pipelines that run the length of the country. Along with that physical footprint is an extensive knowledge pool and a set of well-enforced regulations monitoring their operation.

While moving gas through pipelines across the country is by no means new, the idea of CO2 transportation through pipelines is. But it’s not unprecedented, as it has been carried out since the 1980s at scale across North America. In contrast to BECCS, which would transport CO2 to remove and permanently store emissions, most of the CO2 transport in action today is used in oil enhanced recovery – a means of ejecting more fossil fuels from depleted oil wells. However, the principle of moving CO2 safely over long distances remains relevant – there are already 2,500 km of pipelines in the western USA, transporting as much as 50 million tonnes of CO2 a year.

“People might worry when there is something new moving around in the country, but the science community doesn’t have sleepless nights about CO2 pipelines,” says Dr Hannah Chalmers, from the University of Edinburgh. “It wouldn’t explode, like natural gas might, that’s just not how the molecule works. If it’s properly installed and regulated, there’s no reason to be concerned.”

CO2 is not the same as the methane-based natural gas that people use every day. For one, it is a much more stable, inert molecule, meaning it does not react with other molecules, and it doesn’t fuel explosions in the same way natural gas would.

CO2 has long been understood and there is a growing body of research around transporting and storing it in a safe efficient way that can make CCUS and BECCS a catalyst in reducing the UK’s emissions and future-proofing its economy.

Working with CO2 across the UK

Working with CO2 while it is in a supercritical state mean it’s not just easier to move around pipes. In this state CO2 can also be loaded onto ships in very large quantities, as well as injected into rock formations that once trapped oil and gas, or salt-dense water reserves.

Decades of extracting fossil fuels from the North Sea means it is extensively mapped and the rock formations well understood. The expansive layers of porous sandstone that lie beneath offer the UK an estimated 70 billion tonnes of potential CO2 storage space – something a number of industrial clusters on the UK’s east coast are exploring as part of their plans to decarbonise.

Source: CCS Image Library, Global CCS Institute [Click to view/download]

Drax is already running a pilot BECCS project at its power station in North Yorkshire. As part of the Zero Carbon Humber partnership and wider East Coast Cluster, Drax is involved in the development of large scale carbon storage capabilities in the North Sea that can serve the Humber and Teesside industrial clusters. As Drax moves towards its goal of becoming carbon negative by 2030, transporting CO2 safely at scale is a key focus.

“Much of the research and engineering has already been done around the infrastructure side of the project,” explains Richard Gwilliam, Head of Cluster Development at Drax. “Transporting and storing CO2 captured by the BECCS projects is well understood thanks to extensive engineering investigations already completed both onshore and offshore in the Yorkshire region.”

This also includes research and development into pipes of different materials, carrying CO2 at different pressures and temperatures, as well as fracture and safety testing.

The potential for the UK to build on this foundation and progress towards net zero is considerable. However, for it to fully manifest it will need commitment at a national level to building the additional infrastructure required. The results of such a commitment could be far reaching.

In the Humber alone, 20% of economic value comes from energy and emissions-intensive industries, and as many as 360,000 jobs are supported by industries like refining, petrochemicals, manufacturing and power generation. Putting in place the technology and infrastructure to capture, transport and store emissions will protect those industries while helping the UK reach its climate goals.

It’s just a matter of putting the pipes in place.

Go deeper: How do you store CO2 and what happens to it when you do?

What are nature-based solutions?

What are nature-based solutions?

Nature-based solutions are means of removing carbon dioxide (CO2) from the atmosphere by conserving, restoring, or managing physical environments.

These are separate from engineered or technology-based solutions for removing CO2, in that they use natural forest, soil, and coastal ecosystems. A landscape that can absorb CO2 from the atmosphere and trap it there is known as a carbon sink.

How can nature-based solutions help tackle climate change?  

Reducing CO2 levels in the atmosphere is key to tackling climate change. The Paris Agreement sets out targets for organisations and nations to reduce their CO2 emissions to keep global warming within 1.5 degrees Celsius of pre-industrial levels and avoid “catastrophic” consequences.

However, even as industries strive to decarbonise, some crucial sectors of the economy, such as aviation and agriculture, may prove hugely difficult or even impossible to entirely reduce emissions to zero. Therefore, as well as reducing CO2 emissions, it will be essential to actively remove CO2 that may remain in the economy. This makes nature-based solution’s ability to absorb CO2 from the atmosphere crucially important.

Nature and carbon sinks have kept Earth’s natural carbon cycle balanced since long before humans even stood upright. And they have a crucial role to play in removing CO2 that remains in the atmosphere even as industries strive to reduce their emissions.

How can forests work as nature-based ways of capturing carbon? 

Forests remove carbon from the atmosphere using photosynthesis to capture CO2, using the carbon as a source of energy while releasing oxygen. A 2014 study found that the world’s forests had absorbed as much as 30% of annual global human-generated CO2 emissions over the previous few decades. Forests are some of the earth’s most important carbon sinks, but face threats such as creeping urbanisation. Protecting and managing forests is an important part of ensuring they continue to remove CO2 from the atmosphere.

Afforestation is the establishing of a new forest while reforestation is the restoration of a forest where trees have been lost. Afforestation and reforestation require significant planting and maintenance of trees, but offer additional benefits of reducing the chances of desertification and flooding.

Improved forest management also increases the productivity of forests with activities like thinning diseased or suppressed trees. This is because young trees absorb more CO2 to fuel their growth than more mature forests that do not grow at the same rate.

What other ways can the land capture CO2?

Forests are not the only way land can be used to remove CO2 from the atmosphere. Soil all over the Earth’s surface is a massive carbon sink. Simple changes in farming methods can better protect soil and enable it to continue serving as a sources of carbon removal and storage. Such methods include rotating crops and reviving grasslands, which create larger volumes of plant biomass that decay and store more carbon in the soil.

The effectiveness of soil as a carbon sink can be enhanced further by using a substance called biochar. Biochar is a high-carbon form of charcoal, made by burning biomass like wood or agricultural waste in a zero-oxygen environment. When this charcoal is added to soil, more of the carbon absorbed will remain locked in it.

And soil isn’t the only earth-based natural substance that absorbs CO2 – rocks can, too. As they are rained on, weather and erode, rocks naturally absorb carbon. The bicarbonate that is produced is washed into the sea and is eventually stored on the seabed. This process can be enhanced by grinding rock into powder and spreading it over a large area.

How can restoring environments remove carbon?  

Mangroves on coasts and riverbanks, as well as salt marshes and sea grasses offer another major source of carbon removal and storage. When protected or restored these coastal ecosystems, which cover 490,000 km2 of the earth, can absorb and store huge amounts of what is referred to as ‘blue carbon’ – in fact, they have the ability to sequester carbon at a faster rate than other types of vegetation.

The regeneration of peatlands, a type of wetland including bogs and swamp forests, is also an important way of creating carbon sinks. Peatlands cover more than 3 million km2 around 3% of the world’s surface, and sequester 0.37 billion gigatonnes of CO2 per year.

What other types of solutions are there?

It’s difficult to predict CO2 levels that will remain in the UK economy. The National Grid’s 2020 Future Energy Scenarios (FES) Report, lays out a Steady Progress scenario in which decarbonisation is slow and limited to power and transport sectors. In this forecast there is still 258 million tonnes of CO2 being emitted in 2050.

Nature-based solutions’ ability to remove CO2 at such a scale can be limited by factors such as the land use needed, which can encroach on food crops for example. Nature based solutions are do not always offer permanent removal of CO2. Forest fires for example would release carbon stored in forests, damaging their ability to remove emissions.

Achieving the levels of carbon capture needed to reach net zero will require a variety of nature-based techniques and technologies are needed, all working in tandem to achieve a net zero future.

Man-made technologies include carbon capture methods such as bioenergy with carbon capture and storage (BECCS) and direct air carbon capture and storage (DACCS). But it can also include methods such as using wood or low-carbon concrete in construction There are more ambitious innovations at play too, such as stratospheric aerosols, cloud seeding, space mirrors, and painting surfaces with a reflective coating.

Fast facts

Go deeper

Button: What is bioenergy with carbon capture and storage (BECCS)?

Enviva Cottondale pellet plant catchment area analysis

The Enviva Cottondale pellet mill has a production capacity of 760,000 metric tonnes of wood pellets annually. Raw material used by the mill includes a combination of roundwood, chips, and secondary residuals (i.e., sawdust and shavings), with pine accounting for 80‐90% of total feedstock. In October 2018, Hurricane Michael passed through the centre of the Cottondale catchment area, causing significant damage to the forest resource with more than 500,000 hectares (ha) of forestland destroyed and an estimated loss of 42 million m3of timber (equivalent to around 4 times the UK annual production of roundwood).

This event has had an impact on the data trends for forest inventory, growth and harvesting removals – as harvesting levels were increased to salvage as much timber as possible before it became unusable due to decay. This can be clearly seen in many of the charts below. However, these forest areas have been restored and now continue to grow, allowing the catchment area to return to its pre-hurricane trends in the medium term.

Forest Area 

The catchment area around Enviva’s Cottondale pellet mill includes 4.3 million ha of land, based on the historical feedstock sourcing patterns of the mill. Timberland represents 68.7% (2.95 million ha) of the total land area in the Cottondale catchment area, this has increased slightly since 2000 from 67.8% and can be considered to have remained stable over this time period.  There are also around 300,000 ha of woodland (associated with agricultural land) and around 800,000 ha of cropland and pastureland.  Forestry is the dominant land use in this catchment area (Figure 1).

Figure 1: Land area by usage

Planted pine represents 33% of the timberland area, natural pine 20%, with 10% mixed stands and the remainder being hardwood forest of which 94% is naturally regenerated (Figure 2).  The breakdown of forest type and species composition has remained relatively stable and largely unchanged over the last 20 years, in contrast to other parts of the US South where some natural pine stands have been converted to planted pine. The pine and mixed forest areas are actively managed and produce the majority of the timber harvest in the catchment area. Despite the large area of hardwood forest, management and timber production is limited. Much of this area is classified as bottomland hardwood located alongside rivers, streams, and creeks and in streamside management zones (SMZs), which restricts active management. In addition, the proportion of this catchment area located in Florida contains a large area of swampland, which is largely composed of hardwoods and cannot be actively managed for timber production and is recognised as having important ecological value.

Figure 2: Breakdown of forest type

Volume and Growth

The overall trend of volume and growth in the Cottondale catchment area is of a maturing forest resource and an increasing accumulation of standing volume, particularly in the larger forest product classes (saw-timber and chip-n-saw). Figure 3 shows that total standing volume increased by 64 million m3 from 2000 to 2018, with the largest increases in the pine saw-timber and chip-n-saw categories. In 2018, the devastating impact of Hurricane Michael caused a substantial reduction in the standing volume across every product category with the total standing volume being reduced by 42 million m3. This event has had a significant impact on the forest resource and is a primary cause of recent data trends.

However, the overall long-term trend in the catchment area is of maturing forest and increasing inventory. This should continue in the long-term once the impact of the hurricane damage has been managed and replacement forest areas begin to mature.

Figure 3: Standing volume by product category

Pine pulpwood inventory increased steadily by around 8 million m3 from 2000 to 2013, reaching a peak of 49 million m3. This then declined slightly to 46 million m3 in 2018 due to the maturing age class of the forest and pulpwood forest growing into the larger size class of chip-n-saw and saw-timber forest (Figure 4), in addition to an increase in pulpwood demand as biomass markets became operational and ramped up production. Following the hurricane in 2018, the pine pulpwood inventory dropped by more than 10 million m3. 

Replanting and reforestation of damaged areas will ensure that future pine pulpwood production will increase again once these forests start to mature.

In the period from 2000 to 2018 pine sawtimber standing volume increased by 41.5 million m3 (78%) and chip-n-saw by 19.6 million m3 (73%), indicating a maturing age class and a growing forest resource. The 2018 hurricane caused a reduction in standing volume in both of these product categories of 11.6 and 8 million m3respectively (12% and 17% of the 2018 volume). However, the increasing trend is likely to continue once the forest area recovers.

Figure 4: Standing volume by product category

The growth drain ratio (GDR) is the comparison of average annual growth to removals (typically harvesting), where the growth exceeds removals the GDR will be in excess of 1 and this is considered sustainable, where removals exceed growth then the GDR will be less than 1 and this is not sustainable if maintained in the long-term – although in the short-term this can be a factor of large areas of mature forest with low growth rates and high rates of harvesting, short periods of high demand for a particular product or salvage harvesting after a natural disturbance. The GDR should be considered over a longer time period to ensure it reflects the long-term trend. In the period from 2003 to 2020 the combined GDR for pine products averaged 1.52 with a high of 1.84 and a low of 1.08 (Figure 5).

Figure 5: Growth to drain ratio by product category

The maturing forest resources can be clearly seen from the growth to removals data for each product category. Average tree sizes getting larger and more pulpwood class stands moving into the larger saw-timber and chip-n-saw categories. This trend can be seen by comparing the data values from 2003 and 2018 where saw-timber average annual growth increased by 90% (1.6 million m3), and removals by 41% (0.98 million m3).  Chip-n-saw growth increased by 73% (1.3 million m3) whilst removals increased by 160% (1.9 million m3). Pulpwood growth decreased by 7.5% (0.4 million m3) whilst removals increased by 63% (1.6 million m3).  Over this time period the total annual surplus of pine growth compared to removals averaged 3.7 million m3 per year (Figure 6).

Figure 6: Pine growth and removals by product category and year

Hardwood saw-timber and pulpwood removals declined by 20% and 40% respectively between 2000 and 2018, whilst growth increased by 23% for hardwood saw-timber and declined by 16% for hardwood pulpwood. The average annual hardwood surplus over this time period was 1.5 million m3 per year (Figure 7).

Figure 7: Hardwood growth and removals by product category and year

Despite a short-term imbalance in some product categories, the overall surplus of pine growth compared to removals has remained strong, with an average of 3.3 million m3 between 2000 and 2020, which includes the increased salvage harvesting in 2018 (Figure 8).

Figure 8: Cumulative annual surplus of growth compared to removals

Wood Prices

Stumpage price is the value paid to the forest owner for each category of product at the time of harvesting. The variation in prices in the Cottondale catchment area has been significant and shows some interesting trends. The higher value pine products (saw-timber and chip-n-saw) began with high stumpage values in 2000, as markets were strong for construction and furniture grade timber and supply limited at that stage due to the young age class and predominance of pulpwood stands at that time.  In 2008, following the global economic crisis and the crash in housing and construction markets, saw-timber prices declined substantially reaching a low of $23 per ton, a 47% decline from the 2000 price. This stumpage price has never recovered, despite an improvement in the economy and an increase in housing starts and demand for structural timber. The reason for the continued deflated saw-timber stumpage price is a substantial surplus of supply in this catchment area.  As the forest area has matured and more saw-timber grade stands are available, markets have been able to satisfy demand without an increase in price.

Pine pulpwood prices at Cottondale were lower than the US South-wide average in 2000 and remained relatively low until around 2013. A reduction in saw-timber production, and consequent reduction in mill residuals, due to the recession of 2008, led to a shortage of pulp mill feedstock and increased harvesting of pulpwood stands. This caused an increase in pine pulpwood stumpage values alongside an overall increase in demand as biomass and pellet markets began production around this time. The data shows a short-term spike in pine pulpwood stumpage prices in 2013-14, but this returned to a more normal trend as more saw-timber residues became available and pulpwood stumpage values have been around $10-11 per ton since 2015 (Figure 9).

Figure 9: Variation in stumpage value over time

Biomass demand 

Biomass demand in the Cottondale catchment area began in 2008 and has averaged around 800 thousand m3per year since that time with a high of just over 1 million m3 in 2013 to 2015 and a low of 200 thousand m3 in 2008. Other pulpwood markets have had an average annual demand of 3.97 million m3 between 2000 and 2020 with a high of 4.76 million m3 in 2018 and a low of 3.2 million m3 in 2009.  In 2020 the biomass market represented 16% of the total pulpwood demand in the Cottondale catchment area (Figure 10).

Figure 10: Total pulpwood demand

Forest Management

The average size of clear-cut harvesting sites from 2000 to 2020 has been 47 ha, ranging from 38 ha up to 56 ha. The average size of thinning sites has been 65 ha, ranging from 55 ha up to 76 ha. When isolating the period from 2000 to 2010 and 2011 to 2020, the averages and range remain very similar, suggesting that there has been no significant change in harvesting coupe size over this period.

Figure 11: Average size of harvesting sites

The impact of biomass and wood pellet demand on the key metrics in this catchment area are considered below. This is a summary of Hood Consulting’s view on the trends and impacts in the Cottondale catchment area.

Is there any evidence that bioenergy demand has caused the following:

Deforestation?

No. US Forest Service (USFS) data shows a 55,166-hectare (+1.9%) increase in the total area of timberland in the Enviva Cottondale catchment area since the Enviva Cottondale pellet mill commenced production in 2008. Furthermore, a strong positive relationship was identified between biomass demand and timberland area, suggesting that the increase in timberland area since 2008 can be linked, to a degree, to increased demand attributed to bioenergy.

A change in management practices (rotation lengths, thinnings, conversion from hardwood to pine)?

Inconclusive. Changes in management practices have occurred in the catchment area over the last two decades. However, the evidence is inconclusive as to whether increased demand attributed to bioenergy has caused or is responsible for these changes.

Clearcuts and thinnings are the two major types of harvests that occur in this region, both of which are long-standing, widely used methods of harvesting timber. TimberMart-South (TMS) data shows that thinnings accounted for 63% of total reported harvest area in the Cottondale market from 2005-2011 but only 39% of total harvest area reported from 2012-2020. Specifically, the decreased prevalence of thinning since 2012 can be linked to the strengthening of pine pulpwood markets and concurrent weakening of pine sawtimber markets beginning in the mid-2000s.

Prior to the bursting of the US housing bubble in 2006, timber management in this market had been driven to a large degree by pine sawtimber production. However, challenging market conditions saw pine sawtimber stumpages prices decline more than 40% from 2006-2011. At the same time, pine pulpwood markets started to strengthen, with pine pulpwood stumpage prices increasing more than 50% from 2006-2010. So, with sawtimber markets weakening and pulpwood markets strengthening, the data suggests that many landowners decided to alter their management approach (i.e. to take advantage of strong pulpwood markets) and focus on short pulpwood rotations that typically do not utilize thinnings.

Bioenergy has had an impact on this market by adding an average of roughly 680,000 metric tons of additional pine pulpwood demand to this catchment area annually since 2008. However, bioenergy has accounted for only 17% of total softwood pulpwood demand in this market since Enviva Cottondale’s startup. Ultimately, the shift in management approach that occurred in this market can be more closely linked to other factors, such as increased softwood pulpwood demand from non-bioenergy sources (i.e. pulp/paper) as well as the weakening of pine sawtimber markets.

Diversion from other markets?

No. Demand for softwood (pine) sawlogs increased an estimated 23% in the Cottondale catchment area from 2008-2020. Also, there is no evidence that increased demand from bioenergy has caused a diversion from other softwood pulpwood markets (i.e. pulp/paper), as softwood pulpwood demand not attributed to bioenergy has increased 25% since the Cottondale mill’s startup in 2008.

An unexpected or abnormal increase in wood prices?

Inconclusive. The startup of Enviva Cottondale added more than 900,000 metric tons of softwood pulpwood demand to the catchment area from 2008-2013, and this increase in demand coincided with a 28% increase in the delivered price of pine pulpwood (PPW) – the primary roundwood product consumed by the Enviva Cottondale mill. However, since 2013, delivered PPW prices have held flat, despite biomass-related softwood pulpwood demand falling to an average of roughly 635,000 tons per year since 2016, down more than 40% compared to 2013 peak levels. (Note the decrease in roundwood consumption was due to a higher utilization of secondary residuals). It’s also important to point out that the roughly 410,000-metric ton decrease in softwood biomass demand from 2013 to 2020 was offset by a roughly 455,000-metric ton increase in softwood pulpwood demand from other sources.

Statistical analysis did identify a positive relationship between softwood biomass demand and delivered PPW price. However, that relationship was found to be relatively weak. The relationship between delivered PPW price and softwood pulpwood demand from other sources was found to be much stronger, which was not unexpected to find given that softwood pulpwood demand not attributed to bioenergy has accounted for 83% of total softwood pulpwood demand in the catchment area since 2008.

Furthermore, there is some evidence linking the increase in pine sawmill chip prices to increased consumption of secondary pine residuals by Enviva Cottondale. Specifically, consumption of secondary pine residuals by Enviva Cottondale more than doubled from roughly 213,000 metric tons in 2012 to nearly 490,000 metric tons in 2016, and this increased consumption of pine residuals coincided with a nearly 20% increase in the price of pine sawmill chips. However, increased consumption of residuals by the bioenergy sector was only one of several contributing factors that can be linked to the increase in pine sawmill chip prices. Increased consumption of pine residuals by the pulp/paper industry also contributed to higher pine sawmill chip prices. In addition, there is a strong linkage between pine sawmill chip prices and softwood lumber production. Specifically, the increase in softwood lumber production that begun in the early-to-mid-2010s consequently resulted in the increased production of secondary residuals, and the increased availability of this lower-cost material led to greater competition and ultimately higher pine residual prices.

A reduction in growing stock timber?

No. From 2008 (the year Enviva Cottondale commenced production) up until Hurricane Michael struck in late-2018, total growing stock inventory increased an average of 1.8% per year (+19% total) in the Cottondale catchment area. Specifically, inventories of pine sawtimber and pine chip-n-saw increased 58% and 28%, respectively, while pine pulpwood (PPW) inventory decreased 4% over this same period.

However, note that the decrease in pine pulpwood inventory from 2008-2018 was not due to increased demand from bioenergy or increased harvesting above the sustainable yield capacity of the forest area, as annual growth of pine pulpwood exceeded annual removals every year throughout this period. Rather, this slight decrease in PPW inventory levels is more a reflection of the aging of the catchment area forest and the movement of stands classified as pulpwood to stands classified as chip-n-saw.

A reduction in the sequestration rate of carbon?

No. US Forest Service (USFS) data shows the average annual growth rate of total growing stock timber in the Cottondale catchment area decreased from 5.9% in 2008 to 5.2% in 2020, suggesting that the sequestration rate of carbon also declined slightly over this period. However, there is little evidence to suggest that increased demand attributed to bioenergy is responsible for this change.

The reduction in overall growth rate (and therefore reduction in the sequestration rate of carbon) is more a reflection of the aging of the catchment area forest. Specifically, growth rates decline as timber ages, and this is exactly what USFS data shows in the Cottondale catchment area, with the average age of growing stock timber increasing from less than 44 years of age in 2008 to nearly 46 years of age in 2020.

An increase in harvesting above the sustainable yield capacity of the forest area?

No. Growth-to-removals (G:R) ratios, which compare annual timber growth to annual timber removals, provides a measure of market demand relative to supply as well as a gauge of market sustainability. In 2020, the latest available, the G:R ratio for pine pulpwood (PPW), the predominant timber product utilized by the bioenergy sector, equaled 1.26 (recall that a value greater than 1.0 indicates sustainable harvest levels).

Note, however, that the PPW G:R ratio averaged 1.57 in the catchment area from 2013-2017 before falling to 1.20 in 2018 and averaging 1.27 since. This notable drop in 2018 was due to a nearly 35% increase in PPW removals (due to Hurricane Michael). It’s also important to note that while annual removals have moved back in line with pre-Michael levels since 2019, this lower PPW G:R ratio is likely reflective of the new norm (at least over the midterm). Hurricane Michael destroyed an estimated 22% of total pine pulpwood inventory in the Cottondale catchment area, and this loss in inventory will be reflected in reduced growth until the destroyed forests regenerate. However, in spite of this loss, adequate PPW inventory levels still remain and sustainable market conditions are expected to persist moving forward.

Timber growing stock inventory

Neutral. According to USFS data, inventories of pine pulpwood (PPW) decreased 25% in the catchment area from 2008-2020. However, this substantial decrease was due to Hurricane Michael, which destroyed nearly 520,000 hectares of catchment area timberland when it hit the Florida panhandle in late-2018. Prior to this event occurring, PPW inventory levels had held relatively steady, decreasing slightly but averaging 47.2 million m3 in the catchment area from 2008-2018. However, the destruction caused by Hurricane Michael resulted in the immediate loss of more than 10.3 million m3 of PPW inventory, or a 22% decrease compared to pre-hurricane levels.

Moreover, the slight decrease in PPW inventory levels that did occur from 2008-2018 was not due to increased demand from bioenergy. Typically, a reduction in inventory is linked to harvest levels above the sustainable yield capacity of the forest area, but in the Cottondale catchment area, annual growth of PPW exceeded annual removals every year throughout this period. Ultimately, the decrease in PPW inventory from 2008-2018 can be more closely linked to decreased pine sawtimber production beginning in the early to mid-2000s. Specifically, annual removals of pine sawtimber decreased 28% from 2003-2014, and the reduction in harvest levels over this period translated to a reduction in newly-re-established pine stands and ultimately the slight reduction in PPW inventory levels that occurred in the mid-to-late 2010s.

Timber growth rates

Neutral. Overall, timber growth rates declined slightly in the catchment area from 2008 (the year Enviva Cottondale commenced operations) through 2020. However, this decrease in timber growth rates was not due to increased demand attributed to bioenergy but rather to the aging of the catchment area forest. Specifically, USFS data shows the average age timber inventory in the Cottondale catchment area increased from an estimated 43.6 years of age in 2008 to 45.7 years of age in 2020.

Forest area

Positive. In the Enviva Cottondale catchment area, total forest area (i.e. timberland) increased more than 55,100 hectares (+1.9%) from 2008 through 2020, and this increase can be linked to several factors, including increases in softwood pulpwood demand (from both bioenergy and other sources) as well as conversion from farmland.

Specifically, the more than 55,100-hectare increase in catchment area timberland from 2008-2020 coincided with a 1.1-million metric ton increase in annual softwood pulpwood demand (roughly half of which was attributed to bioenergy). While statistical analysis identified moderately strong positive relationships between timberland area and both softwood biomass demand and non-bioenergy-related softwood pulpwood demand, a strong positive correlation was found between timberland and total softwood pulpwood demand – suggesting that the increases in timberland since 2008 can be attributed, in part, to the increase in total softwood pulpwood demand (from both bioenergy and other sources).

The more than 55,100-hectare increase timberland from 2008-2020 also coincided with a roughly 75,000-hectare decrease in farmland (i.e. cropland, woodland, and pastureland) over this period. Specifically, the catchment area experienced a roughly 31,800-hectare loss in cropland, 8,900-hectare loss in pastureland, and 34,300-hectare loss in woodland from 2008-2020. Furthermore, statistical analysis confirmed this inverse relationship, identifying a strong negative correlation between timberland and farmland in the Cottondale catchment area.

Wood prices

Negative / Positive. Total softwood pulpwood demand attributed to bioenergy in the Cottondale catchment area increased from zero tons in 2007 (the year prior to Enviva Cottondale’s startup) to over 1.0 million metric tons in 2013. Over this same period, the price of delivered pine pulpwood (PPW) – the predominant roundwood product utilized by Enviva Cottondale for wood pellet production – increased 42% (from $21.06 per ton in 2007 to $29.82 per ton in 2013).

However, the apparent link between increased softwood biomass demand and increased delivered PPW price is only loosely supported by statistical analysis, which identified a relatively weak positive relationship between these two variables. Furthermore, delivered PPW price has remained nearly unchanged in the catchment area since 2013, despite softwood biomass demand declining and averaging roughly 577,000 metric tons per year since 2016. (Note that the roughly 410,000-metric ton decrease in softwood biomass demand from 2013-2020 was offset by a roughly 455,000-metric ton increase in softwood pulpwood demand from other sources). Ultimately, the increase in delivered PPW prices in the catchment area can be linked to increased demand for softwood pulpwood from all sources, and roughly half of the 1.2-million metric ton increase in softwood pulpwood demand since 2007 can be attributed to bioenergy.

However, it’s also important to note that the increase in bioenergy-related wood demand has been a positive for forest landowners in the Enviva Cottondale catchment area. Not only has bioenergy provided an additional outlet for pulpwood in this market, but the increase in delivered PPW price resulting from increased softwood pulpwood demand from bioenergy has transferred through to landowners in the form of higher PPW stumpage prices. Specifically, over the six years prior to Enviva Cottondale’s startup, PPW stumpage price – the price paid to landowners – averaged roughly $7.40 per ton in the Cottondale catchment area. However, since 2010, PPW stumpage prices have averaged more than $11.15 per ton, representing a more than 50% increase compared to pre-mill startup levels.

Markets for solid wood products

Positive. In the Enviva Cottondale catchment area, demand for softwood sawlogs used to produce lumber and other solid wood products increased an estimated 23% from 2008-2020. This increase in softwood lumber production has consequentially resulted in an increase in sawmill residuals (i.e. chips, sawdust, and shavings) – by-products of the sawmilling process and materials utilized by Enviva Cottondale to produce wood pellets.

Specifically, softwood sawlog demand has increased more than 16% in the catchment area since 2014, and this increase in demand has coincided with a nearly 60% increase in pine residual purchases by Enviva Cottondale. (Note that pine residuals constituted 25% of total raw material purchases by Enviva Cottondale in 2014 but 41% of total raw material purchases in 2020). So, not only has Enviva Cottondale benefited from the greater availability of this sawmill by-product, but lumber producers have also benefited, as Enviva Cottondale has provided an additional outlet for these producers and their by-products.

Read the full report: Enviva Cottondale pellet plant catchment area analysis

This is part of a series of catchment area analyses around the forest biomass pellet plants supplying Drax Power Station with renewable fuel. Others in the series can be found here

The apprenticeships of the future

In brief

  • Apprenticeships are widely available at Drax, not just in engineering

  • Hear what our existing apprentices think about the opportunities they’ve taken

  • Discover where to find out more: could you be the next Drax apprentice?

Apprenticeships are changing – once mainly the domain of school leavers entering a trade, they are now a possibility for people at many different career stages, in countless industries.

At Drax, we offer a wide range of apprenticeships across a variety of business areas, from engineering to data science. The scheme covers costs to individuals without affecting employee salaries or benefits, whilst providing sufficient support and protected study time.

“Take the opportunity! We’re very lucky to have the chance to complete apprenticeships while working.”

— Beka Mantle, apprentice

By undertaking the apprenticeship, people can learn a new set of skills to improve their knowledge and expertise, boost their career opportunities and gain invaluable experience.

What is an apprenticeship?

An apprenticeship is made up of learning with a training provider and practical experience on the job.

Apprenticeships can benefit Drax by attracting new talent while also developing existing colleagues and future-proofing our workforce to help achieve our ambition to become carbon negative by 2030.

Apprentice Q&A

The following insights from Drax employees highlight the opportunities that apprenticeships can give them and what they have learnt so far.

Joe Clements

Job title: Technical Engineering Trainee

Apprenticeship: Mechanical Engineering Pathway Continuation

Q: What are the benefits of an apprenticeship?

A: It’s put me in positions that I might not have found myself in before, forcing me to learn fast and adapt. It’s also benefiting Drax as I’m constantly learning and developing within my team. On completion, I should be ready to go straight into an engineering role.

Q: What are the challenges?

A: Balancing your work and study, especially as you grow into the role and take on more tasks. However, you’re guaranteed learning hours on a weekly basis.

Lois Cheatle

Job title: Finance Graduate

Apprenticeship: Accountancy and Taxation

Q: Why did you want to do an apprenticeship?

A: Having graduated from university and taken a year out, I wanted to further improve on the skills I’d learnt. An apprenticeship has allowed me to develop these skills both from learning on the job and having technical support from my training provider as I worked my way through my accountancy qualification.

It’s also given me the opportunity to develop soft skills such as communication and building relationships, which is part of the professional development side of the apprenticeship.

Alex Hegarty

Job title: Data Science Analyst

Apprenticeship: Data Science

Q: How was your apprenticeship application process?

A: It was fairly straightforward – Louisa Russell (Early Careers Manager at Drax) helped me with my enrolment. To qualify for the course, I had to complete a quiz to prove I had basic proficiency in programming.

Q: What’s the best thing about doing an apprenticeship?

A: Having experts with extensive knowledge of the subject who you can pester with questions.

Beka Mantle

Job title: 4E Business Lead

Apprenticeship: Improvement Specialist

Q: Have you felt supported? 

A: Very. My line manager is always checking in to see how I’m getting on and offering support, and I have catch ups with the Early Careers team. I also meet my apprenticeship tutor at least bi-weekly, and he’s always there to answer any questions and talk things through. I’m also lucky to have someone else on my team who’s working through the same apprenticeship – it’s great when we need to practise something or bounce ideas off each other.

Q: What would you say to anyone thinking of doing an apprenticeship? 

A: Take the opportunity! We’re very lucky to have the chance to complete apprenticeships while working, and I’m grateful to have the support of so many people around me while I’m on this journey.

Chris Hughes

Job Title: Seconded to Supplier Relationship Manager

Apprenticeship: Regulatory Compliance

Q: What’s the best thing about it?

A: Making new friends from different sectors, such as councils and environmental health, and gaining an insight into their working lives and how compliance plays its part. It’s also motivating to get continuous positive feedback about my strong coursework and presentations.

Jason Reeve

Job title: Collections Manager – line manager to Chris Hughes and Jessica Leason, Supplier Relationship Manager

Q: How do you manage study commitments?

A: I’ve made sure that both Chris and Jessica have had dedicated study time blocked out in their diaries. In our 1:1s, we’ve discussed progress and looked at the assessment criteria to make sure they’ve been involved with projects giving them valuable experience to support their apprenticeship.

Q: Why is it important to support colleagues doing apprenticeships?

A: It’s vital to develop your team – as a manager, a large part of my success is down to the skills and expertise my team brings to the table. Helping Chris and Jess through their apprenticeship has really aided their personal development, knowledge and skills. I soon started seeing the benefit in terms of what they were bringing to the team, their contribution to the department and their own confidence.

Their continued development through the scheme has helped keep their passion alive for their roles and driven their success.

Go deeper

Find out more about the apprenticeships we offer at Drax, as well as our other career opportunities here.

What is bioenergy with carbon capture and storage (BECCS)?

What is bioenergy with carbon capture and storage (BECCS)? 

Bioenergy with carbon capture and storage (BECCS) is the process of capturing and permanently storing carbon dioxide (CO2) from biomass (organic matter) energy generation.

Why is BECCS important for decarbonisation? 

Sustainably sourced biomass-generated energy (bioenergy) can be carbon neutral, as plants absorb CO2 from the atmosphere as they grow. This, in turn, offsets CO2 emissions released when the biomass is combusted as fuel.

When sustainable bioenergy is paired with carbon capture and storage it becomes a source of negative emissions, as CO2 is permanently removed from the carbon cycle.

Experts believe that negative emissions technologies (NETs) are crucial to helping countries meet the long-term goals set out in the Paris Climate Agreement. As BECCS is the most scalable of these technologies this decade, it has a key role to play in combating climate change.

How is the bioenergy for BECCS generated?

Most bioenergy is produced by combusting biomass as a fuel in boilers or furnaces to produce high-pressure steam that drives electricity-generating turbines. Alternatively, bioenergy generation can use a wide range of organic materials, including crops specifically planted and grown for the purpose, as well as residues from agriculture, forestry and wood products industries. Energy-dense forms of biomass, such as compressed wood pellets, enable bioenergy to be generated on a much larger scale. Fuels like wood pellets can also be used as a substitute for coal in existing power stations.

How is the carbon captured?

BECCS uses a post-combustion carbon capture process, where solvents isolate CO2 from the flue gases produced when the biomass is combusted. The captured CO2 is pressurised and turned into a liquid-like substance so it can then be transported by pipeline.

How is the carbon stored?

Captured CO2 can be safely and permanently injected into naturally occurring porous rock formations, for example unused natural gas reservoirs, coal beds that can’t be mined, or saline aquifers (water permeable rocks saturated with salt water). This process is known as sequestration.

Over time, the sequestered CO2 may react with the minerals, locking it chemically into the surrounding rock through a process called mineral storage.

BECCS fast facts

Is BECCS sustainable?

 Bioenergy can be generated from a range of biomass sources ranging from agricultural by-products to forestry residues to organic municipal waste. During their lifetime plants absorb CO2 from the atmosphere, this balances out the CO2that is released when the biomass is combusted.

What’s crucial is that the biomass is sustainably sourced, be it from agriculture or forest waste. Responsibly managed sources of biomass are those which naturally regenerate or are replanted and regrown, where there’s a increase of carbon stored in the land and where the natural environment is protected from harm.

Biomass wood pellets used as bioenergy in the UK, for example, are only sustainable when the forests they are sourced from continue to grow. Sourcing decisions must be based on science and not adversely affect the long-term potential of forests to store and sequester carbon.

Biomass pellets can also create a sustainable market for forestry products, which serves to encourage reforestation and afforestation – leading to even more CO2 being absorbed from the atmosphere.

Go deeper:

  • The triple benefits for the environment and economy of deploying BECCS in the UK.
  • How BECCS can offer essential grid stability as the electricity system moves to low- and zero-carbon sources.
  • Producing biomass from sustainable forests is key to ensuring BECCS can deliver negative emissions.
  • 5 innovative projects where carbon capture is already underway around the world
  • 7 places on the path to negative emissions through BECCS

Evaluating regrowth post-harvest with accurate data and satellite imagery

  • Drax has been using effective post-harvest evaluations, which includes remote sensing technology and satellite imagery

  • Alongside sustainable forest management, monitoring can help support rapid regrowth after harvesting

  • Evidence shows healthy managed forests with no signs of deforestation or degradation

As part of Drax’s world-leading programme of demonstrating biomass sustainability, including ongoing work on catchment area analysis (CAA), responsible sourcing policy and healthy forest landscapes (HFL). We have also been trialling the use of high-resolution satellite imagery to monitor forest conditions on specific harvesting sites in the years after harvesting has taken place, in addition to the catchment area level monitoring of trends and data. Post-harvest evaluations (PHE) are an essential part of an ongoing sustainability monitoring process, ensuring that the future forest resource is protected and maintained and that landowners restore forests after harvesting to prevent deforestation or degradation.

The most effective form of PHE is for an experienced local forester to walk and survey the harvesting site to check that new trees are growing and that the health and quality of the young replacement forest is maintained.

Rapid regrowth

The images below show some of the sites surrounding Drax’s Amite Bioenergy pellet plant in Mississippi, with trees at various stages of regrowth in the years after harvesting.

A full site inspection can therefore enable a forester to determine whether the quantity and distribution of healthy trees is sufficient to make a productive forest, equivalent to the area that was harvested. It can also identify if there are any health problems, pest damage or management issues such as  weed growth or water-logging that should be resolved.

Typically, this will be the responsibility of the forest owner or their forest manager and is a regular part of ongoing forest management activity. This degree of survey and assessment is not practical or cost-effective where a third-party consumer of wood fibre purchases a small proportion (typically 20-25 tonnes per acre) of the low-grade fibre produced at a harvest as a one-off transaction for its wood pellet plant..  It is time consuming to walk every acre of restocked forest and it is not always possible to get an owner’s permission to access their land.

Forests from space

Therefore, an alternative methodology is required to make an assessment about the condition of forest lands that have been harvested to supply biomass, without the need to physically inspect each site.  One option is to use remote sensing and satellite imagery to view each harvested site in the years after biomass sourcing, this helps to monitor restocking and new tree growth.

Drax has been testing the remote sensing approach using Maxar’s commercial satellite imagery.  Maxar has four satellites on orbit that collect more than three million square kilometres of high-resolution imagery every day. Drax accesses this imagery through Maxar’s subscription service SecureWatch.

To test the viability of this methodology, Drax has been looking at harvesting sites in Mississippi that supplied biomass to the Amite Bioenergy pellet plant in 2015 and in 2017.  As part of the sustainability checks that are carried out prior to purchasing wood fibre, Drax collects information on each harvesting tract. This includes the location of the site, the type of harvest, the owner’s long-term management intentions and species and volume details.

This data can then be used at a later date to revisit the site and monitor the condition of the area. Third-party auditors, for instance Through Sustainable Biomass Program (SBP) certification, do visit harvesting sites, however this is typically during the year of harvest rather than after restocking. Maxar has historical imagery of this region from 2010, which is prior to any harvesting for wood pellets.  The image below shows a harvesting site near the pellet plant at Gloster, Mississippi, before any harvesting has taken place.

March 2010 (100m)

Satellite image © 2021 Maxar Technologies.

The image below shows the same site in 2017 immediately following harvesting.

December 2017 (100m)

Satellite image © 2021 Maxar Technologies.

If we look again at this same site three years after harvesting, we can see the rows of trees that have been planted and the quality of the regrowth. This series of images demonstrates that this harvested area has remained a forest, has not been subject to deforestation and that the regrowth appears to be healthy at this stage.

August 2020 (50m)

Satellite image © 2021 Maxar Technologies.

Another site in the Amite catchment area is shown below. The image shows a mature forest prior to harvesting, the site has been previously thinned as can be seen from the thinned rows that are evident in the imagery.

May 2010 (200m)

Satellite image © 2021 Maxar Technologies.

Looking at the same site in the year after harvesting, the clear cut area can be seen clearly. Some green vegetation cover can also be seen on the harvested area, but this is weed growth rather than replanted trees. Some areas of mature trees have been left at the time of harvesting, and are visible as a grey colour in the 2010 image. These are likely to be streamside management zones that have been left to maintain biodiversity and to protect water quality, with the grey winter colouring suggesting that they are hardwoods.

September 2018 (200m)

Satellite image © 2021 Maxar Technologies.

Three years after the harvest, in a zoomed in view from the previous image, clear rows of replanted trees can be seen in the imagery.  This demonstrates that the owner has successfully restocked the forest area and that the newly planted forest appears healthy and well established.

August 2020 (50m)

Satellite image © 2021 Maxar Technologies.

While examining different harvesting sites in satellite imagery, Drax noted that not every site had evidence of tree growth, particularly within the first three years after harvesting. Deliberate conversion of land to non-forest use, such as for conversion to pasture, agricultural crops or urban development, is likely to be evident fairly soon after harvesting.

Preparing for planting

Some forest owners like to leave a harvested site unplanted for a couple of years to allow ground vegetation and weed growth to establish, this can then be treated to ensure that trees can be planted and that the weed growth does not impede the establishment of the new forest, this process can mean that trees are not visible in satellite imagery for three to four years after harvesting.

The image below shows a site three years after harvesting with no evidence of tree growth.  Given that no conversion of land use is evident and that the site appears to be clear of weed growth, this is likely to be an example of where the owners have waited to clear the site of weeds prior to replanting.  This site can be monitored in future imagery from the Maxar satellites to ensure that forest regrowth does take place.

November 2020 (100m)

Satellite image © 2021 Maxar Technologies.

Drax will continue to use Maxar’s SecureWatch platform to monitor the regrowth of harvesting sites and will publish more detailed results and analysis when this process has been developed further.  The platform allows ongoing comparison of a site over time and could prove a more efficient method of analysis than ground survey.  In conjunction with the CAA and HFL work, PHE can add remote sensing as a valuable monitoring and evidence-gathering tool to demonstrate robust biomass sustainability standards and a positive environmental impact.

Go deeper: 

Discover the steps we take to ensure our wood pellet supply chain is better for our forests, our planet and our future here, how to plant more trees and better manage them, our responsible sourcing policy for biomass from sustainable forests and a guide to sustainable forest management of the Southern Working Forest.

Supporting the deployment of Bioenergy Carbon Capture and Storage (BECCS) in the UK: business model options

Innovation engineer inspecting CCUS incubation area BECCS pilot plant at Drax Power Station, 2019

Click to view/download the report PDF.

Drax Power Station is currently exploring the option of adding carbon capture and storage equipment to its biomass-fired generating units. The resulting plant could produce at least 8 million tonnes (Mt) of negative CO2 emissions each year, as well as generating renewable electricity. Drax is planning to make a final investment decision (FID) on its bioenergy with carbon capture and storage (‘BECCS in power’1) investment in Q1 2024, with the first BECCS unit to be operating by 2027.

The potential of BECCS as part of the path to Net Zero has been widely recognised.

  • BECCS in power is an important part of all of the Climate Change Committee (CCC)’s Net Zero scenarios, contributing to negative emissions of between 16- 39Mt CO2e per year by 20502. Investment needs to occur early: by 2035, the CCC sees a role for 3-4GW of BECCS, as part of a mix of low carbon generation3.
  • The Government’s Energy White Paper commits, by 2022, to establishing the role which BECCS can play in reducing carbon emissions across the economy and setting out how the technology could be deployed. The Government has also committed to invest up to £1 billion to support the establishment of carbon capture, usage and storage (CCUS) in four industrial clusters4.
  • National Grid’s 2020 Future Energy Scenarios (FES) indicate that it is not possible to achieve Net Zero without BECCS5.

However, at present, a business model6 which could enable this investment is not in place. A business model is required because a number of barriers and market failures otherwise make economic investment impossible.

  • There is no market for negative emissions. There is currently no source of remuneration for the value delivered by negative emissions, and therefore no return for the investment needed to achieve them.
  • Positive spillovers are not remunerated. Positive spillovers that would be delivered by a first-of-a-kind BECCS power plant, but which are not remunerated include:
    • providing an anchor load for carbon dioxide (CO2) transport and storage (T&S) infrastructure that can be used by subsequent CCS projects;
    • delivering learning that will help lower the costs of subsequent BECCS power plants; and
    • delivering learning and shared skills that can be used across a range of CCS projects, including hydrogen production with CCS.
  • BECCS relies on the presence of CO2 transport and storage infrastructure. Where this infrastructure doesn’t already exist, or where the availability or costs are highly uncertain, this presents a significant risk to investors in BECCS in power.
CCUS incubation area, Drax Power Station, July 2019

CCUS incubation area, Drax Power Station; click image to view/download

Frontier Economics has been commissioned by Drax to develop and evaluate business model options for BECCS in power that could overcome these barriers, and help deliver timely investment in BECCS.

Business model options

We started with a long list of business model options. After eliminating options that are unsuitable for BECCS in power, we considered the following three options in detail.

  • Power Contract for Difference (CfD): the strike price of the CfD would be set to include remuneration for negative emissions, low carbon power and for learnings and spillover benefits.
  • Carbon payment: a contractual carbon payment would provide a fixed payment per tonne of negative emissions. The payment level would be set to include remuneration for negative emissions, low carbon power and for learnings and spillovers.
  • Carbon payment + power CfD: this option combines the two options above. The carbon payment would provide remuneration for negative emissions and learnings and spillovers while the power CfD would support power market revenues for the plant’s renewable power output.

We first considered if committing to any of these business model options for BECCS in power now might restrict future policy options for a broader GGR support scheme. We assessed whether these options could, over time, be transitioned into a broader GGR support scheme (i.e. one not just focused on BECCS in power), and concluded that this would be possible for all of them.

We then considered how these business model options could be funded, and whether the choice of a business model option is linked to a particular source of funds (for example, power CfDs are currently funded by a levy paid by electricity suppliers to the Low Carbon Contracts Company [LCCC]). We concluded that business models do not need to be attached to specific funding sources; all of the options can be designed to fit with numerous different funding options, so the two decisions can be made independently. This means that the business model options can be considered on their own terms, with thinking about funding sources being progressed in parallel.

We then evaluated the three business model options against a set of criteria developed from principles set out in the BEIS consultation on business models for CCS, summarised in the figure below.

Figure 1: Principles for design of business models

Instil investor confidence▪ Attract innovation
▪ Attract new entrants
▪ Instil supply chain confidence
Cost efficiency▪ Drive efficient management of investment costs
▪ Drive efficient quantity of investment
▪ Drive efficient dispatch and operation
▪ Risks allocated in an efficient way, taking into account the impact on the cost of capital
Feasibility▪ Limit administrative burden
▪ Practicality for investors
▪ Requirement for complementary policy
▪ Wider policy and state aid compatibility
▪ Timely implementation
Fair cost sharing▪ Allows fair and practical cost distribution
Ease of policy transition▪ Ease of transition to subsidy free system
▪ Ease of transition to technology neutral solution

Source: Frontier Economics. Click to view/download graphic. 

All three business model options performed well across most criteria. However, our evaluation highlighted some key trade-offs to consider when choosing a business model:

  • investor confidence: the power CfD and the two-part model with a CfD performed better than the carbon payment on this measure, as they shield investors from wholesale power market fluctuations;
  • feasibility: the power CfD performed best on this measure. Because it is already established in existing legislation and is well understood, it will be quick to implement. Introducing a mechanism to provide carbon payments may require new legislation. However, this will be needed in any case to support other CCUS technologies7, and could be introduced in time before projects come online; and
  • potential to become technology neutral and subsidy free: all three options could transition to a mid-term regime which could be technology neutral. However, the stand-alone power CfD performed least well as it does not deliver any learnings around remunerating negative emissions.

Overall, the two-part model performed well across the criteria and would offer a clear path to a technology neutral and subsidy free world, delivering learnings that will be relevant for other GGRs as well.

Conclusions

The UK’s Net Zero target will be challenging to achieve, and will require investment in negative emissions technologies to offset residual emissions from hard-to-abate sectors, as highlighted by the CCC8. BECCS in power is a particularly important part of this picture, and represents a cost-effective means of delivering the scale of negative emissions needed. Early investment in BECCS is also important in insuring against the risk and cost of ”back ending” significant abatement effort.

However, market failures, most notably the lack of a market for negative emissions, lack of remuneration for positive spillovers and learnings, and reliance on availability of T&S infrastructure, mean that without policy intervention, the required level of BECCS in power is unlikely to be delivered in time to contribute to Net Zero.

There are a number of business options available in the near term to overcome these barriers. In our view, a two-part model combining a power CfD and a carbon payment is preferable.

This measure:

  • addresses identified market failures;
  • can be implemented relatively easily and in time to capture benefits of early BECCS in power investment; and
  • can be structured to ensure an efficient outcome for customers (including with reference to investors’ likely cost of capital) and in a way that allocates risks appropriately.

View/download the full report (PDF).


1: Biomass can be combusted to generate energy (typically in the form of power, but this could also be in the form of heat or liquid fuel), or gasified to produce hydrogen. The resulting emissions can then be captured and stored using CCS technology. The focus of this report is on biomass combustion to generate power, with CCS, which we refer to as ‘BECCS in power’. We refer to biomass gasification with CCS as ‘BECCS for hydrogen’.

2: CCC (2020) , The Sixth Carbon Budget, Greenhouse Gas Removals, https://www.theccc.org.uk/wp-content/uploads/2020/12/Sector-summary-GHG-removals.pdf The CCC’s 2019 Net Zero report also saw a role for BECCS, with 51Mt of emissions removals included in the Further Ambition scenario by 2050. CCC (2019), Net Zero: The UK’s Contribution to Stopping Global Warming. https://www.theccc.org.uk/publication/net-zero-the-uks-contribution-to-stopping-global-warming/

3: CCC (2020), Policies for the Sixth Carbon Budget, https://www.theccc.org.uk/wp-content/uploads/2020/12/Policies-for-the-Sixth-Carbon-Budget-and-Net-Zero.pdf

4: BEIS (2020), Powering our Net Zero Future, https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/945899/201216_BEIS_EWP_Command_Paper_Accessible.pdf

5: National Grid (2020), Future Energy Scenarios 2020, https://www.nationalgrideso.com/future-energy/future-energy-scenarios/fes-2020-documents

6: In this report, we use “business model” to describe Government market-based incentives for investment and operation. This is in line with the use of this term by BEIS, for example in BEIS (2019), Business Models For Carbon Capture, Usage And Storage, https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/819648/ccus-business-models-consultation.pdf

7: BEIS (2020), CCUS: An update on business models for Carbon Capture, Usage and Storage https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/946561/ccus-business-models-commercial-update.pdf

8: CCC (2020) , The Sixth Carbon Budget, Greenhouse Gas Removals, https://www.theccc.org.uk/wp-content/uploads/2020/12/Sector-summary-GHG-removals.pdf

Satisfaction / waiver of conditions in relation to the proposed acquisition of Pinnacle Renewable Energy Inc.

RNS Number : 6420U
Drax Group plc
(“Drax” or the “Group”; Symbol:DRX)

On 8 February 2021, Drax announced that it had entered into an agreement to acquire the entire issued share capital of Pinnacle Renewable Energy Inc. (the “Acquisition”). On 31 March 2021, Drax announced that the Acquisition had been approved by Drax Shareholders at the General Meeting and Pinnacle announced that the Acquisition had been approved by Pinnacle Shareholders.

Drax is pleased to announce that on 6 April 2021 the Supreme Court of British Columbia granted the Final Order. All of the conditions to the Completion of the Acquisition have now been satisfied or waived (other than conditions which can only be satisfied at Completion) and Completion is expected to occur on 13 April 2021.

Capitalised terms used but not defined in this announcement have the meanings given to them in the Circular.

Enquiries:

Drax Investor Relations: Mark Strafford

+44 (0) 7730 763 949

Media:

Drax External Communications: Ali Lewis

+44 (0) 7712 670 888