Tag: BECCS (bioenergy with carbon capture and storage)

Drax enters formal discussions with UK Government on large-scale Power BECCS

Drax has been invited to enter formal bilateral discussions with the Government immediately, to move the project forward and ensure the Government is able to fulfil its restated commitment to achieving 5Mtpa of engineered Greenhouse Gas Removals (GGRs) by 2030. Drax believes that BECCS at Drax Power Station is the only project that can enable the Government to achieve this goal(1). The Government has also committed to publish its biomass strategy by the end of June 2023 which will set out how the technology could be deployed.

During 2022 carbon removal projects, including Power BECCS, were progressed in parallel with the Track 1 process for gas, hydrogen and industrial CCS projects. While Power BECCS and other shortlisted projects are not included in the immediate Track 1 process, the Government has confirmed that in 2023 it will set out a process for the expansion of Track 1 and has today launched Track 2. BECCS is eligible for both.

Separately, the Government has stated that it will work closely with electricity generators currently using biomass to facilitate a transition to Power BECCS.

The Government has also confirmed that its response to the Power BECCS business model consultation, which took place in 2022, will be published imminently, providing further clarity on the delivery of BECCS as soon as possible.

Drax Group CEO, Will Gardiner said:

“Delivery of BECCS at Drax Power Station will help the UK achieve its net zero targets, create thousands of jobs across the north and help ensure the UK’s long-term energy security.

“We note confirmation that our project has met the Government’s deliverability criteria and Government remains committed to achieve 5Mtpa of engineered Greenhouse Gas Removals by 2030 – a goal that cannot be achieved without BECCS at Drax Power Station. We will immediately enter into formal discussions with Government to take our project forward.

“With the right engagement from Government and swift decision making, Drax stands ready to progress our £2bn investment programme and deliver this critical project for the UK by 2030.”

The Government recognises the important role which BECCS will play in delivering net zero and aims to deploy 5Mt of engineered CO2 removals per annum from BECCS and other engineered GGR technologies by 2030, rising to 23Mt in 2035 and up to 81Mt in 2050 to keep the UK on a pathway to meet its legislated climate targets, The Sixth Carbon Budget and net zero.

Drax Power Station is the UK’s largest single source of renewable electricity and BECCS is the only technology that can produce reliable renewable power, provide system support services and permanently remove CO2 at scale. 

Coal closure

Drax continues to expect to close its two legacy coal units at the end of March 2023.

Notes

(1)  In its Energy White Paper, Government noted that biomass is unique amongst renewable technologies in the wide array of applications in which it can be used as a substitute for fossil-fuel based products and activities, along with its ability to deliver permanent carbon removals.

Government recognises that biomass is one of the UKs most valuable tools for reaching net zero emissions while maintaining energy security.

Biomass is the only large-scale source of dispatchable, renewable electricity and Drax power station in Yorkshire is the largest provider of secure supply in the UK’s electricity system. Its renewable biomass generation provides 2.6GW of electricity, representing 4% of the UK’s dispatchable capacity and supplies millions of homes and businesses with dispatchable, reliable power. 

The project at Drax Power Station is expected to be the world’s biggest engineered carbon removal project, permanently removing 8Mt of CO2 from the atmosphere every year by 2030.

The project would see the addition of post combustion carbon capture to two of the existing biomass units, using sustainable biomass and technology from Drax’s technology partner, Mitsubishi Heavy Industries. Captured CO2 would be transported and permanently stored by the Group’s partners in the East Coast Cluster.

Vivid Economics concluded that it could deliver £370 million of economic benefit for the UK during construction, creating and supporting more than 10,000 jobs during peak construction.

Recent Baringa research also demonstrates that Drax is the UK’s largest source of energy security and will continue to play a vital role in the UK security of supply in to the late 2020s.

Drax aims to source 80% of materials and services for the project from British businesses and is also working with British Steel to explore opportunities for its UK production facilities to supply a proportion of the steel needed for BECCS.

A link to the Government’s announcement can be found here.

Enquiries:

Drax Investor Relations: Mark Strafford

+44 (0) 7730 763 949

Media:

Drax External Communications: Chris Mostyn

+44 (0) 7548 838 896

Carbon markets will be essential in reaching net zero – we must ensure they support high standards

Angela Hepworth, Commercial Director, Drax

In brief:

  • The voluntary carbon market will be essential in deploying engineered carbon removals technologies like Bioenergy with carbon capture and storage (BECCS), and direct air carbon capture and storage (DACS) at scale.
  • The Integrity Council for the Voluntary Carbon Market is developing a set of Core Carbon Principles (CCPs).
  • Drax support proposed principles if they’re applied in ways appropriate for engineered carbon removals.
  • Standards around additionality and the permanence of carbon removals may apply very differently to nature-based and engineered removals, something that needs to be addressed explicitly.

There’s growing recognition, in governments and environmental organisations, of the urgent need to develop high-integrity engineered carbon removals at scale if the world has any chance of meeting our collective Paris-aligned climate goals.

Bioenergy with carbon capture and storage (BECCS), and direct air carbon capture and storage (DACS) are two technologies on the cusp of deployment at scale that can remove carbon from the atmosphere and store it permanently and safely. The technology is proven, developers are bringing forward projects, and the most forward-thinking companies are actively seeking to buy removal credits from BECCS and DACS developers.

Yet there’s a risk that the frameworks being developed in the voluntary carbon market could stifle rather than support the development of engineered carbon removals.

Drax is a world-leader in the deployment of bioenergy solutions. Our goal is to produce 12 million tonnes of high-integrity, permanent CO2 removals by 2030 from its BECCS projects in the U.K. and the U.S. We support the development of rigorous standards for CO2 removals that give purchasers confidence in the integrity of the CO2 removals they’re buying. Such standards are also important in providing a clear framework for project developers to work to.

However, the market and its standards have largely developed around carbon reduction and avoidance credits, rather than removals. To create a market that can enable engineered carbon removals at scale, re-thinking is needed to create standards that are fit for purpose to tackle the climate emergency.

Core Carbon Principles

The Integrity Council for the Voluntary Carbon Market is in the process of developing a set of Core Carbon Principles (CCPs) and Assessment Framework (AF) intended to set new threshold standards for high-quality carbon credits.

At Drax, we welcome and support the principles proposed by the Integrity Council. However, it’s crucial they’re applied in ways that are appropriate for engineered carbon removals, and support rather than prevent their development.

Many CCPs are directly applicable to engineered carbon removals and can offer important standards for projects developing removals technologies. Among the most important principles include those stating:

  • Removals must be robustly quantified, with appropriate conservatism in any assumptions made.
  • Key information must be provided in the public domain to enable appropriate scrutiny of the carbon removal activity, while safeguarding commercially sensitive information.
  • Removal credits should be subject to robust, independent third-party validation and verification.
  • Credits should be held in a registry which deals appropriately with removal credits.
  • Registries must be subject to appropriate governance, to ensure their integrity without becoming disproportionately bureaucratic or burdensome.
  • Removals must adhere to high standards of sustainability, taking account of impacts on nature, the climate and society.
  • There should be no double counting of carbon removals between corporates, or between countries. Bearing in mind that both corporates and countries may count the same removals in parallel, and that the Article 6 mechanism means countries can decide whether trades between corporates should or shouldn’t trigger corresponding adjustments to countries’ carbon inventories.

However, as pioneers in the field, we believe that two of the Core Carbon Principles need to be adapted to the specific characteristics of engineered carbon removals.

Supporting additionality and development incentives

The CCPs state: “The greenhouse gas (GHG) emission reductions or removals from the mitigation activity shall be additional, i.e., they would not have occurred in the absence of the incentive created by carbon credit revenues.”

Engineered carbon removal credits such as BECCS and DACS are by their nature additional. They are developed for the specific purpose of removing CO2 from the atmosphere and putting it back in the geosphere. They also rely on revenue from carbon markets – largely the voluntary market at present, but potentially compliance markets such as the U.K. and E.U. ETS in the future.

However, most early projects are likely to have some form of Government support (e.g., 45Q in the U.S., or Contracts for Difference in the U.K.) from outside carbon credit revenues. But that support isn’t intended to be sufficient on its own for their deployment – project developers will be expected to sell credits in compliance or voluntary markets.

Engineered carbon removals have high up-front capital costs, and it’s clear that revenue from voluntary or compliance markets will be essential to make them viable.

Additionality assessments should be risk-based. If it’s clear that a technology-type is additional, a technology-level assessment should be sufficient. This should be supplemented with full transparency on any government support provided to projects.

Compensating against non-permanent storage

On the topic of permanence that CCPs state: “The GHG emission reductions or removals from the mitigation activity shall be permanent, or if they have a risk of reversal, any reversals shall be fully compensated.”  A key benefit of engineered carbon removals with geological storage is that they effectively provide permanent carbon removal. Any risk of reversal over tens of thousands of years is extremely small.

The risk of reversal for nature-based credits, by contrast, is much greater. Schemes for managing reversal risk in the voluntary carbon market that have been developed for nature-based credits, are not necessarily appropriate for engineered removals.

Requirements for project developers to set aside a significant proportion of credits generated in a buffer pool, potentially as much as 10%, are disproportionate to the real risk of reversal from a well-manged geological store. They also fail to take account of the stringent regulatory requirements for geological storage that already exist or are being put in place.

Any ongoing requirements for monitoring should be consistent with existing regulatory requirements placed on storage owners and operators. Similarly, where jurisdictions have robust regulatory arrangements for dealing with CO2 storage risk, which place liabilities on storage owners, operators, or governments, the arrangements in the voluntary carbon market should mirror these arrangements rather than cutting across them, and no additional liabilities should be put on project developers.

At Drax, we believe the CCPs provide a suitable framework to ensure the integrity of engineered carbon removals. If applied pragmatically, they can give purchasers of engineered carbon removal credits confidence in the integrity of the product they’re buying and provide a clear framework for project developers. They can ensure that standards support, rather than stifle the development of high integrity carbon removal projects such as BECCS and DACS, which are essential to achieving our global climate goals.

Carbon removals is a global need. The U.S. is making it possible

Key takeaways:

  • Removing carbon from the atmosphere is urgent if we are to meet global climate targets
  • The U.S.’s commitment to supporting carbon removal technologies creates an opportunity for new bioenergy with carbon capture and storage (BECCS) power stations
  • The market for carbon credits is gaining increasing credibility and verification, making it a source of financing for ambitious decarbonization projects
  • Carbon markets are needed now to make investment into vital removals projects possible in the U.S. and globally

After a summer of soaring temperatures across the Northern Hemisphere, the global nature of climate change is more obvious than ever. Forest fires around the world in 2021 resulted in double the loss of tree cover than in 2001, while today more than 2.3 billion people face water stress from drought. It’s clear that the action we take to help tackle the global climate emergency must be international too.

We believe that carbon dioxide (CO2) removals will be crucial in addressing this global challenge. Experts and governments agree that in addition to economy-wide decarbonization, removing carbon from the atmosphere is critical to meeting the goal of net zero CO2 emissions by mid-century. The IPCC says 10 billion tons per year of removals will be needed in 2050 for the world to get to net zero. That’s a huge step up from the 40 million tons captured globally in 2021, but also a significant investment opportunity.

Our ambition is to remove 4 million tons of CO2 through bioenergy with carbon capture and storage (BECCS) outside the UK per year, while generating renewable, baseload electricity and supporting healthy, sustainable forests.

The likely contender for our first location? The United States. We already operate in communities across the U.S. South, employing more than 1,200 people in our sustainable biomass pellet production. Now we are preparing to build a new BECCS power station in the region.

It’s clear to us that the U.S. is an ideal market for BECCS with its long-running sustainable forest industry and range of suitable sites for permanent CO2 storage. We see the country’s efforts to retire coal by 2030 and commitment to innovation as an opportunity to build one of the largest carbon removal projects in the U.S. Our first plant could be capable of permanently removing 2 million tons of carbon from the atmosphere a year, while also generating 2-terawatt hours of 24/7 renewable power.

The U.S.’s newly legislated commitment to tackling climate change through the Inflation Reduction Act, as well as the Department of Energy’s National Renewable Energy Lab recent scenario planning for ‘100% clean electricity system’ are establishing it as the leading market to deploy new environmental technologies. And a new frontier for permanent, high-quality emissions removals.

The need for high quality, permanent emissions removals

A net zero future is only possible through the wide-spread implementation of high-integrity, carbon removals. BECCS offers this by combining low carbon, renewable biomass power generation with carbon capture technology and secure, permanent carbon sequestration.

BECCS works by generating renewable electricity using biomass sourced from sustainably managed forests that absorb CO2 as they grow. CO2 released in the generation process is captured and stored, permanently and safely, in geological rock formations. The overall process removes more CO2 from the atmosphere than it emits, resulting in negative emissions.

This allows us to offer decarbonizing industries high-quality carbon removals credits. Given the scale of CO2that must be removed from the atmosphere and the importance for countries and companies around the world to reach net zero, I believe this market for verified CO2 removal credits is a trillion-dollar opportunity.

Voluntary carbon markets have historically suffered from a lack of sustained and reliable investment due to fluctuating market prices and varying quality of the carbon credits they contain. However, increased oversight from investors, NGOs and independent bodies is encouraging credibility and integrity, prompting sustained adoption by businesses.

Will Gardiner, Drax Group CEO

We’ve demonstrated the growing appetite for carbon removals by signing the worlds largest carbon removals deal to date at New York Climate week. The agreement with Respira, an impact-driven carbon finance business, will allow it to purchase 400,000 metric tons of CO2 removals (CDRs) a year from our North American operations. This would enable other corporations and financial institutions to achieve their own CO2 emissions reduction targets, by purchasing CDRs from Respira.

Deals like these make voluntary carbon markets a more effective means of reducing net CO2 emissions by securing commitments and driving investment in projects that deliver independently verified, high-quality emissions reductions. As the global economy works towards its net zero targets, CO2 removals will be crucial in reducing the still dangerously high levels of carbon in our atmosphere today.

BECCS stands to be a powerful tool in a net zero future as the only technology capable of delivering both high quality, permanent carbon removals, while also delivering baseload renewable power. The ability to generate power with negative emissions will be crucial for increasingly electrified economies, as they move away from fossil fuels.

The potential for the U.S.  

Driven by a dynamic mix of markets, investors and engaged consumers, some of the most prominent U.S. companies are pledging to reach net zero, investing in 24/7 renewable power and other means to do so.

Technology companies like Alphabet, Apple, and Microsoft have laid out ambitious plans to decarbonize operations, supply chains, and even remove historic emissions. Other organizations, like the First Movers Coalition, include U.S. companies from a range of sectors committing corporate purchasing power to solving difficult decarbonization challenges.

This industry readiness is increasingly backed up by legislative policy action. The recent Inflation Reduction Act substantially increases the availability of the 45Q tax credit for carbon capture and storage projects, increasing their value from $50 a ton of carbon removals to $85 per ton, helping to further support the business case needed to deploy technologies like BECCS.

We believe the U.S. is on the right track to create a market in which BECCS can thrive. The Department of Energy’s National Renewable Energy Lab recent ‘100% clean electricity system’ report includes BECCS in three of the four possible scenarios explored. It forecasts the US will need between 7-14GW of installed BECCS capacity by 2035 to achieve an electricity system with net zero CO2 emissions. That equates to removals of approximately 55-120 Mt CO2 per year by 2035.

The U.S.’s established forestry commercial industry, with its credible commitment to sustainable management offers ample low-grade wood and wood industry residues to power BECCS. The country’s long-running exploration of CO2 capture and transport, and history of industrial innovations means there are the skills, supply chains, and regulatory environment to undertake ambitious new infrastructure projects.

LaSalle Forest

BECCS is a proven technology and one that can scale up sooner than any other technology. But action is needed now to make these markets that can deliver large scale carbon removals projects a reality.

Action is needed now

For responsible businesses with the desire to go further, faster, or for sectors still developing viable decarbonization routes, carbon removals from BECCS deliver real, verifiable, and permanent progress towards net zero and beyond, to net negative.

It’s encouraging to see the U.S. pass legislation that can facilitate investment into carbon removal technologies and develop the carbon credit market.

However, carbon markets must have standards that are credible both in the business community, and in the environmental and civil society. Collaboration between governments, corporations, and NGOs will be critical to ensure we create systems that can tackle the climate emergency.

We can’t afford to contemplate theoretical net zero futures. Buying and selling high-quality permanent removals is the action we need today. Now is the time to capture the opportunity and be part of the solution together.

Why the Humber represents Britain’s biggest decarbonisation opportunity

Richard Gwilliam, Head of Cluster Development at Drax

Key takeaways:

  • The Humber industrial cluster contributes £18 billion a year to the UK economy and supports 360,000 jobs in heavy industry and manufacturing.
  • As demand for industrial products with green credentials rises and net zero targets demand decarbonisation, businesses in the Humber need to begin implementing carbon capture at scale.
  • The size of the Humber and diversity of industries make it a significant challenge but if we get it right, the Humber will be a world leader in decarbonisation.
  • Without investment in decarbonisation infrastructure the region risks losing its status as a world leading industrial cluster putting hundreds of thousands of jobs at risk.

When the iconic Humber Bridge opened in June 1981, it did more than just set records for its size. It connected the region, uniting both communities and industries, and allowing the Humber to become what it is today: a thriving industrial hub that contributes more than £18 billion to the UK economy and supports some 360,000 jobs.

As the UK works towards a low-carbon future, the shift to a green economy will require new regional infrastructure, that once again unites the Humber’s people and businesses around a shared goal.

While the Humber Bridge connected the region across the estuary waters, a new subterranean pipeline that can transport the carbon captured from industries, will unify the region’s decarbonisation efforts.

It’s infrastructure that will be crucial in helping the UK reach its net zero goals, but also cement the Humber’s position as a global decarbonisation leader.

The Humber Bridge

Capturing carbon across the Humber

Capturing carbon, preventing emissions from entering the atmosphere and storing them safely and permanently, is a fundamental part of decarbonising the economy and tackling climate change. Aside from the chemical engineering required to extract carbon dioxide (CO2) from industrial emissions, one of the key challenges of carbon capture is how you transport it at scale to secure storage locations, such as below the North Sea bed where the carbon can be permanently trapped and sequestered.

Click to view/download

Engineers at Drax Power Station

At Drax, we’re pioneering bioenergy with carbon capture and storage (BECCS) technology. But carbon capture will play an important role in decarbonising a wide range of industries. The Humber region not only produces about 20% of the UK’s electricity, it’s also a major hub for chemicals, refining, steel making and other carbon-intensive industries.

The consequence of this industrial mix is that the Humber’s carbon footprint per head of population is bigger than anywhere else in the country. At an international level it’s the second largest industrial cluster by CO2 emissions in the whole of Western Europe. If the UK is to reach net zero, the Humber must decarbonise. And carbon capture and storage will be instrumental in achieving that.

The scale of the challenge in the Humber also makes it an opportunity to significantly reduce the country’s overall emissions and break new ground, implementing carbon capture innovations across a wide range of industries. These diverse businesses can be united in their collective efforts and connected through shared decarbonisation infrastructure – equipment to capture emissions, pipelines to transport them, and a shared site to store them safely and permanently.

Economies of scale through shared infrastructure

The idea of a CO2 transport pipeline traversing the Humber might sound unusual, but large-scale natural gas pipelines have criss-crossed the region since the late 1960s when gas was dispatched from the Easington Terminal on the east Yorkshire coast under the Humber to Killingholme in North Lincolnshire. Further, the UK’s existing legislation creates an environment to ensure they can be operated safely and effectively. CO2 is a very stable molecule, compared to natural gas, and there are already thousands of miles of CO2 pipelines operating around the US, where it’s historically been used in oil recovery.

A shared pipeline also offers economies of scale for companies to implement carbon capture, allowing the Humber’s cluster of carbon-intensive industries to invest in vital infrastructure in a cost-effective way. The diversity of different industries in the region, from renewable baseload power generation at Drax to cutting-edge hydrogen production, also offers a chance to experiment and showcase what’s possible at scale.

The Humber’s position as an estuary onto the North Sea is also advantageous. Its expansive layers of porous sandstone offer an estimated 70 billion tonnes of potential CO2 storage space.

The Humber Estuary

 

But this isn’t just an opportunity to decarbonise the UK’s most emissions-intensive region, it’s a stage to present a new green industrial hub to the world. A hub that could create as many as 47,800 jobs, including high quality technical and construction roles, as well as other jobs throughout supply chains and the wider UK economy.

British innovation as a global export

As industries of all kinds across the world race to decarbonise, there’s an increasing demand for products with green credentials. If we can decarbonise products from the region, such as steel, it will give UK businesses a global edge. Failure to follow through on environmental ambitions, however, will not just damage the cluster’s status, it will put hundreds of thousands of jobs at risk.

Breaking new ground is difficult but there are first-mover advantages. The products and processes trialled and run at scale within the Humber offer intellectual property that industrial hubs around the world are searching for, creating a new export for the UK.

But this vision of a decarbonised Humber, that exports both its products and knowledge to the world, is only possible if we take the right action now. We have a genuine global leadership position. If we don’t act now, that will be lost.

Through projects like Zero Carbon Humber and the East Coast Cluster, alongside Net Zero Teesside, the region’s businesses have shown our collective commitment to implementing decarbonisation at scale through collaboration.

As a Track 1 cluster, the Humber presents one of the UK’s greatest opportunities to level up – attracting global businesses and investors, as well as protecting and creating skilled jobs. We need to seize this moment and put in place the infrastructure that will put the Humber at the forefront of a low-carbon future.

Bridging the skills gap to a net zero future starts with education

Jane Breach, Community, and Education lead for Drax Power Station

Key takeaways:

  • Decarbonising the Humber industrial cluster could create as many as 50,000 new jobs – requiring a workforce skilled in the low carbon technologies.
  • Drax’s engagement with local education establishments is important to us as a good neighbour to communities and in bridging the emerging skills gap.
  • We’ve worked closely with nearby Selby College to create a syllabus that will equip both current and future Drax employees with skills for low carbon technologies, including hands-on carbon capture, usage, and storage engineering.
  • Across the UK decarbonising businesses must identify what skills their future employees will need and work with educators to deliver curriculums.

At Drax, we have a long-lasting commitment to promoting Science, Technology, Engineering, and Maths (STEM) education in the Yorkshire and Humber region and beyond.

Delivering the Zero Carbon Humber and the East Coast Cluster initiatives means that we will need a highly skilled labour force to help us reach the region’s goal of building the world’s first net zero industrial region. In practice, this will create roughly 50,000 new jobs in the region – requiring a workforce who are proficient in new and emerging low carbon technologies.

Businesses in education

We have a responsibility to be a good neighbour, support education in our local area, to help secure our talent pipeline, and provide inspiration.

Bruce Heppenstall Drax Plant Director, Lewis Marron, Drax 4th Year Apprentice, and Liz Ridley Deputy Principal at Selby College.

One way we’re helping to develop the next generation of green economy colleagues is through our partnership with nearby Selby College. In 2020, we announced a £180,000 five-year partnership with the college, aimed at supporting education and skills. Last year, we expanded our partnership even further and developed the UK’s first educational programmes dedicated to carbon capture.

Working together, we secured more than £270,000 in funding from the government for the programme, enabling the college to create a new training course in carbon capture, usage, and storage (CCUS) technologies. Our engineers work closely with the college, developing a syllabus that will equip both current and future Drax employees with the vital skills needed to operate negative emissions technology.

This even includes a rig that mirrors the CCUS equipment used in our bioenergy with carbon capture and storage (BECCS) pilot, giving students the chance to work with real equipment rather than just the theory. We believe that by showing students the kind of work we do on-site we can give them a deeper understanding of how we operate.

The Department of Education highlighted the success of our partnership as an example of how business and education can work together – something I believe is crucial to bridging the emerging low carbon skills gap.

The skills gap and future STEM workers

Our work with Selby College has highlighted the significant need to educate and upskill the UK’s workforce in low carbon technologies as quickly as possible. Although most organisations recognise the need to decarbonise, they are uncertain about what they and their employees need to do to achieve this.

There are a lot of conversations about the need for green skills and re-skilling employees in carbon-intensive sectors but to put a real definition on what’s needed is a lot harder. Every company must examine its business plan and try to unpick what skills they will need in 10, 20, or even 50 years down the line – and in such a fast moving world this can prove to be a real challenge.

At Drax, we’re committed to building on our values, as an innovative and best in class place where we care about what matters. We aim to do this by identifying training needs that are linked with new technologies beyond just BECCS, and working together with educators to make sure the relevant courses can either be distributed to other SMEs and large companies or adapted to help retrain people in other sectors.

Our commitment to STEM and education starts with young people and a hands-on curriculum delivered by our engineers to help support teachers. We want to develop deeper, more impactful education programmes that offer them multiple interactions with Drax, our engineers and operations throughout a person’s education.

In my role, you don’t always see the immediate impact. However, when you start talking to people, you realise that you’ve impacted them at some stage on their career journey. That impact is what’s really important to us and to building a net zero Humber.

Find more information about our partnership with Selby College here.

Half year results for the six months ended 30 June 2022

RNS Number: 6883T
Drax Group plc
(“Drax” or the “Group”; Symbol:DRX)

Six months ended 30 JuneH1 2022H1 2021
Key financial performance measures
Adjusted EBITDA (£ million)(1)(2)225186
Continuing operations225165
Discontinued operations – gas generation-21
Net debt (£ million)(3)1,1011,029
Adjusted basic EPS (pence)(1)20.014.6
Interim dividend (pence per share)8.47.5
Total financial performance measures from continuing operations
Operating profit (£ million)20784
Profit before tax (£ million)20052

Drax CEO, Will Gardiner [click to view/download]

Will Gardiner, CEO of Drax Group, said:

“As the UK’s largest generator of renewable power by output, Drax plays a critical role in supporting the country’s security of supply. We are accelerating our investment in renewable generation, having recently submitted planning applications for the development of BECCS at Drax Power Station and for the expansion of Cruachan Pumped Storage Power Station.

“As a leading producer of sustainable wood pellets we continue to invest in expanding our pellet production in order to supply the rising global demand for renewable power generated from biomass. We have commissioned new biomass pellet production plants in the US South and expect to take a final investment decision on up to 500,000 tonnes of additional capacity before the end of the year.

“As carbon removals become an increasingly urgent part of the global route to Net Zero, we are also making very encouraging progress towards delivering BECCS in North America and progressing with site selection, government engagement and technology development.

“In the UK and US we have plans to invest £3 billion in renewables that would create thousands of green jobs in communities that need them, underlining our position as a growing, international business at the heart of the green energy transition.”

Financial highlights

  • Adjusted EBITDA £225 million up 21% (H1 2021: £186 million)
  • Strong liquidity and balance sheet – £539 million of cash and committed facilities at 30 June 2022
    • Expect to be significantly below 2 times Net Debt to Adjusted EBITDA by the end of 2022
  • Sustainable and growing dividend – expected full year dividend up 11.7% to 21.0 p/share (2021: 18.8 p/share)
    • Interim dividend of 8.4 p/share (H1 2021: 7.5 p/share) – 40% of full year expectation

Engineers at Cruachan Power Station

Progress with strategy in H1 2022

  • To be a global leader in sustainable biomass – targeting 8Mt of capacity and 4Mt of sales to 3rd parties by 2030
    • Addition of 0.4Mt of operational pellet production capacity
    • New Tokyo sales office opened July 2022
  • To be a global leader in negative emissions
    • BECCS – UK – targeting 8Mt of negative emissions by 2030
    • Planning application submitted and government consultation on GGR business models published with power BECCS business model consultation expected “during the summer”
    • BECCS – North America – targeting 4Mt of negative emissions by 2030
    • Ongoing engagement with policy makers, screening of regions and locations for BECCS
  • To be a leader in UK dispatchable, renewable power
    • >99% reduction in scope 1 and 2 emissions from generation since 2012
    • UK’s largest generator of renewable power by output – 11% of total
    • Optimisation of biomass generation and logistics to support security of supply at times of higher demand
    • Planning application submitted for 600MW expansion of Cruachan and connection agreement secured

Outlook for 2022

  • Expectations for full year Adjusted EBITDA unchanged from 6 July 2022 update which reflected optimisation of biomass generation and logistics to support UK security of supply this winter when demand is high, a strong pumped storage performance and agreement of a winter contingency contract for coal

Future positive – people, nature, climate

  • People
    • Diversity and inclusion programme – inclusive management, promoting social mobility via graduates, apprenticeships and work experience programmes
    • Continued commitment to STEM outreach programme

An apprentice working in the turbine hall at Drax Power Station, North Yorkshire

  • Nature and climate
    • Science-based sustainability policy fully compliant with current UK and EU law on sustainable sourcing and aligned with UN guidelines for carbon accounting
    • Biomass produced using sawmill and forest residuals, and low-grade roundwood, which often have few alternative markets and would otherwise be landfilled, burned or left to rot, releasing CO2 and other GHGs
    • Increase in sawmill residues used by Drax to produce pellets – 67% of total fibre (FY 2021: 62%)
    • 100% of woody biomass produced by Drax verified against SBP, SFI, FSC®(4) or PEFC Chain of Custody certification with third-party supplier compliance primarily via SBP certification

Operational review

Pellet Production – increased production, flexible operations to support UK generation, addition of 0.4Mt of capacity 

  • Adjusted EBITDA up 13% to £45 million (H1 2021: £40 million)
    • Pellet production up 54% to 2.0Mt (H1 2021: 1.3Mt) (including Pinnacle since 13 April 2021)
  • Addition of c.0.4Mt of new production capacity
    • Commissioning of Demopolis and Leola, expect to reach full production capacity in H2 2022
  • Total $/t cost of $146/t(5) – 2% increase on 2021 ($143/t(5))
    • Increase in utility costs in Q2-22 (>20% increase)
    • Fuel surcharge – barge and rail to port (> 10% increase)
    • Commissioning costs at Demopolis and Leola plants
    • Net reduction in other costs, inclusive of optimisation of supply chain to meet reprofiling of Generation
    • No material change in fibre costs
  • Areas of focus for further savings – wider range of sustainable biomass fibre, continued focus on operational efficiency and improvement, capacity expansion, innovation and technology
  • Continue to target final investment decision on up to 0.5Mt of new capacity in H2 2022

Generation – increased recognition of value of long-term security of supply from biomass and pumped storage

  • Adjusted EBITDA from continuing operations £205 million up 24% (H1 2021: £165 million)
    • Optimisation of biomass generation and logistics to support security of supply at times of higher demand
    • Summer – lower power demand, lower power generation and sale of reprofiled biomass
    • Winter – maximise biomass deliveries to support increased generation at times of higher demand
    • Four small, planned biomass outages completed in H1, supporting higher planned generation in H2-22
    • Strong portfolio system support performance (balancing mechanism, ancillary services and optimisation)
    • Higher cost of sales – logistics optimisation, biomass and system costs
  • Six-month extension of coal at request of UK government – winter contingency contract for security of supply
    • Closure of coal units in March 2023 following expiration of agreement with ESO at end of March 2023
    • Fixed fee and compensation for associated costs, including coal
    • Remain committed to coal closure and development of BECCS, with no change to expected timetable
  • As at 21 July 2022, Drax had 25.4TWh of power hedged between 2022 and 2024 on its ROC and hydro generation assets at an average price of £95.9/MWh, with a further 2.3TWh equivalent of gas sales (transacted for the purpose of accessing additional liquidity for forward sales from ROC units and highly correlated to forward power prices) plus additional sales under the CfD mechanism
Contracted power sales 21 July 2022202220232024
ROC (TWh(6))11.78.84.5
Average achieved £ per MWh87.298.3109.5
Hydro (TWh)0.30.1-
-Average achieved £ per MWh133.1242.0-
Gas hedges (TWh equivalent)(0.1)0.51.9
-Pence per therm361.0145.8135.0
Lower expected level of ROC generation in 2023 due to major planned outages on two units

Customers – renewable power under long-term contracts to high-quality I&C customers and decarbonisation products

  • Adjusted EBITDA of £24 million (H1 2021: £5 million loss) – continued improvement following impact of Covid-19
    • principally in the SME business
    • Includes benefit of excess contracted power sold back into merchant market
  • Continued development of Industrial & Commercial (I&C) portfolio
    • 9TWh of power sales – 21% increase compared to H1 2021 (5.7TWh)
    • Focusing on key sectors to increase sales to high-quality counterparties supporting generation route to market
    • Energy services to expand the Group’s system support capability and customer sustainability objectives
  • SME – increasingly stringent credit control in SME business to reflect higher power price environment

Other financial information

  • Total operating profit from continuing operations of £207 million (H1 2021: £84 million), including £130 million mark-to-market gain on derivative contracts and £27 million of exceptional costs
  • Total profit after tax from continuing operations of £148 million includes an £8 million non-cash charge from revaluing deferred tax balances following confirmation of UK corporation tax rate increases from 2023 (H1 2021: £6 million loss including a £48 million non-cash charge from revaluing deferred tax balances)
  • Capital investment of £60 million (H1 2021: £71 million) – primarily maintenance
    • Full year expectation of £290–£310 million, includes £120 million for Open Cycle Gas Turbine projects, £20 million BECCS FEED and site preparation, and £10 million associated with new pellet capacity, subject to final investment decision (FID)
  • Depreciation and amortisation of £121 million (H1: £89 million) reflects inclusion of Pinnacle for a full six months, plant upgrades and accelerated depreciation of certain pellet plant equipment in line with planned capital upgrades
  • Group cost of debt below 3.6%
  • Cash Generated from Operations £185 million (H1 2021: £138 million)
  • Net Debt of £1,101 million (31 December 2021: £1,044 million), including cash and cash equivalents of £288 million (31 December H1 2021: £317 million)
    • Continue to expect Net Debt to Adjusted EBITDA significantly below 2 times by end of 2022, reflecting optimisation of generation and logistics to deliver higher levels of power generation and cash flows in H2 2022

View complete half year report

View Investor Presentation

Webcast Live Event

An introduction to carbon accounting

Key takeaways:

  • Tracking, reporting, and calculating carbon emissions are a key part of progressing countries, industries, and companies towards net zero goals.
  • As a newly established discipline, carbon accounting still lacks standardisation and frameworks in how emissions are tracked, reduced, and mitigated.
  • The main carbon accounting standard used by businesses is the Greenhouse Gas (GHG) Protocol, which lays out three ‘Scopes’ businesses should report and act upon.
  • Carbon accounting evolves from reporting in the use of goals and timeframes in which targets are met.
  • Timeframes are crucial in the deployment of technologies like carbon capture, removals, and achieving net zero.

How can countries and companies find a route to net zero emissions? Many organisations, countries and industries have pledged to balance their emissions before mid-century. They intend to do this through a combination of cutting emissions and removing carbon from the atmosphere.

Tracking and quantifying emissions, understanding output, reducing them, and setting tangible targets that can be worked towards are all central to tackling climate change and reducing greenhouse gas emissions – especially when it comes to carbon dioxide (CO2). Emissions and energy consumption reporting is already common practice and compulsory for businesses over a certain size in the UK. However, carbon accounting takes this a step further.

“Carbon reporting is a statement of physical greenhouse gas emissions that occur over a given period,” explains Michael Goldsworthy, Head of Climate Change and Carbon Strategy at Drax. “Carbon accounting relates to how those emissions are then processed and counted towards specific targets. The methodologies for calculating emissions and determining contributions against targets may then have differing rules depending on which framework or standard is being reported against.”

Carbon accounting tools can help companies and counties understand their carbon footprint – how much carbon is being emitted as part of their operations, who is responsible for them, and how they can be effectively mitigated.

Like how financial accounting may seek to balance a company’s books and calculate potential profit, carbon accounting seeks to do the same with emissions, tracking what an entity emits, and what it reduces, removes, or mitigates. Carbon accounting is, therefore, crucial in understanding how countries and companies can contribute to reaching net zero.

A new space

How different organisations, countries and industries approach carbon accounting is still an evolving process.

“It’s as complex as financial accounting, but with financial accounting, there’s a long standing industry that relies on well-established practices and principles. Carbon accounting by contrast is such a new space,” explains Goldsworthy.

Regardless of its infancy, businesses and countries are already implementing standardised approaches to carbon accounting. Regulations such as emissions trading schemes and reporting systems, such as Streamlined Energy and Carbon Reporting (SECR) and the Taskforce on Climate Related Financial Disclosure (TCFD), are beginning to deliver some degree of consistency in businesses’ carbon reporting.

Other standards such as the GHG Protocol have sought to provide a standardised basis for corporate reporting and accounting. Elsewhere, voluntary carbon markets (e.g. carbon offsets) have also evolved to allow transferral of carbon reductions or removals between businesses, providing flexibility to companies in delivering their climate commitments.

The challenge is in aligning these frameworks so that they work together. For example, emissions within a corporate inventory or offset programme must be accounted for in a way that is consistent with a national inventory.

To date, these accounting systems have evolved independently with different rules and methodologies. Beginning to implement detailed carbon accounting, upon which emissions reductions and removals can be based, requires standardised understanding of what they are and where they come from.

Reporting and tackling Scope One, Two, and Three emissions

The main carbon accounting standard used by businesses is the Greenhouse Gas (GHG) Protocol. This voluntary carbon reporting standard can be used by countries and cities, as well as individual companies globally.

The GHG protocol categorises emissions in three different ‘scopes’, called Scope 1, Scope 2, and Scope 3. Understanding, measuring, and reporting these is a key factor in carbon accounting and can drive meaningful emissions reduction and mitigation.

Scope One – Direct emissions

Scope One emissions are those that come as a direct result of a company or country’s activities. These can include fuel combustion at a factory’s facilities, for example, or emissions from a fleet of vehicles.

Scope One emissions are the most straightforward for an organisation to measure and report, and easier for organisations to directly act on.

Scope Two – Indirect energy emissions

Scope Two emissions are those which come from the generation of energy an organisation uses. These can include emissions form electricity, steam, heating, and cooling.

A business may buy electricity, for example, from an electricity supplier, which acquires power from a generator. If that generator is a fossil-fuelled power station the energy consumer’s Scope Two emissions will be greater than if it buys power from a renewable electricity supplier or generates its own renewable power.

The ability to change energy suppliers makes Scope Two relatively straightforward for organisations to act on, assuming renewable energy sources are available in the area.

Scope Three – All other indirect emissions

Scope Three is much broader. It covers upstream and downstream lifecycle emissions of products used or produced by a company, as well as other indirect emissions such as employee commuting and business travel emissions.

Identifying and reducing these emissions across supply and value chains can be difficult for businesses with complex supply lines and global distribution networks. They are also hard for companies to directly influence.

Add in factors like emissions mitigations or offsetting, and the carbon accounting can quickly become much more complex than simply reporting and reducing emissions that occur directly from a company’s activities. Nevertheless, these full-system overviews and whole-product lifecycle accounting are crucial to understanding the true impact of operations and organisations, and to reach climate goals.

Working to timelines

Setting goals with defined timelines and the development of rules that ensure consistent accounting is also crucial to implementing effective climate change mitigation frameworks throughout the global economy. Consider the UK’s aim to be net zero by 2050, or Drax’s ambition to be net negative by 2030, as goals with set timelines.

For many technologies, the time scales over which targets are set have added relevance. There are often upfront emissions to account for and operational emissions that may change over time. Take for example an electric vehicle: the climate benefit will be determined by emissions from construction and the carbon intensity of the electricity used to power it.

A timeline of BECCS at Drax [click to view/download]

Looking at a brief snapshot at the beginning of its life, say the first couple of years, might not show any climate benefit compared to a vehicle using an internal combustion engine. Over the lifetime of the vehicle, however, meaningful emissions savings may become clear – especially if the electricity powering the vehicle continues to decarbonise over time.

This provides a challenge when setting carbon emissions targets. Targets set too far in the future potentially risk inaction in the short term, while targets set over short periods risk disincentivising technologies that have substantial long-term mitigation potential. 

Delivering net zero

Some greenhouse gas emissions will be impossible to fully abate, such as methane and nitrous oxide emissions from agriculture, while other sectors, like aviation, will be incredibly difficult to fully decarbonise. This makes carbon removal technologies all the more critical to ensuring net zero is achieved.

Technologies such as bioenergy with carbon capture and storage (BECCS) – which combines low-carbon, biomass-fuelled renewable power generation with carbon capture and storage (CCS) to permanently remove emissions from the atmosphere – are already under development.

However, it is imperative that such technologies are accounted for using robust approaches to carbon accounting, ensuring all emission and removals flows across the value chain are accurately calculated in accordance with best scientific practice. In the case of BECCS, it’s vital that not only are emissions from processing and transporting biomass considered, but also its potential impact on the land sector.

Forests from which biomass is sourced will be managed for a variety of reasons, such as mitigating natural disturbance, delivering commercial returns, and preserving ecosystems. Accurate accounting of these impacts is therefore key to ensuring such technologies deliver meaningful reductions in atmospheric CO2within timeframes guided by science.

Accounting for net zero

While carbon accounting is crucial to reaching a true level of net zero in the UK and globally, where residual emissions are balanced against removals, the practice should not be used exclusively to deliver numerical carbon goals.

“To deliver net zero, it’s vital we have robust carbon accounting systems and targets in place, ensuring we reduce fossil emissions as far as possible while also incentivising carbon removal solutions,” says Goldsworthy.

“However, many removal solutions rely on the natural world and so it is critical that ecosystems are not only valued on a carbon basis but consider other environmental factors such as biodiversity as well.”

Why and how is carbon dioxide transported?

What is carbon transportation?

Carbon transportation is the movement of carbon from one place to another. In nature, carbon moves through the carbon cycle. In industries like energy, however, carbon transportation refers to the physical transfer of carbon dioxide (CO2) emissions from the point of capture to the point of usage or storage.

Why does carbon need to be transported?

Anthropogenic (man-made) CO2 released in processes like power generation leads to the direct increase of CO2 in the atmosphere and contributes to global warming.

However, these emissions can be captured as part of carbon capture and storage (CCS). The CO2 is then transported for safe and permanent storage in geological formations deep underground.

Capturing and storing CO2 prevents it from entering the atmosphere and contributing to global warming. Processes that can deliver negative emissions – such as bioenergy with carbon capture and storage (BECCS) and direct air capture and storage (DACS) – aim to permanently remove CO2 from the atmosphere through CCS.

In CCS, carbon must be transported from the site where it’s captured to a site where it can be permanently stored. This means it needs to travel from a power station or factory to a geological formation like a saline aquifer or depleted oil and gas reservoirs.

As of September 2021, there were 27 operational CCS facilities around the world, with the combined capacity to capture around 40 million tonnes per annum (Mtpa) of CO2. It’s estimated that the UK alone has 70 billion tonnes of potential CO2 storage space in sandstone rock formations under the North Sea.

How is carbon transported?

CO2 can be transported via trucks or ships, but the most common and efficient method is by pipeline. Moving gases of any kind through pipelines is based on pressure. Gases travel from areas of high pressure to areas of low pressure. Compressing gas to a high pressure allows it to flow to other locations.

Gas pipelines are common all around the world, including those transporting CO2. In the US there are, for instance, more than 50 CO2 pipelines – covering around 6,500 km and transporting approximately 68 million tonnes of CO2 a year.

Gas takes up less volume when it’s compressed, and even less when it is liquefied, solidified, or hydrated. Therefore, before being transported, captured CO2 is often compressed and liquefied until it becomes a supercritical fluid.

In a supercritical state, CO2 has the density of a liquid but the viscosity (thickness) of a gas and is, therefore, easier to transport through pipelines. It’s also 50-80% less dense than water, with a viscosity that is 100 times lower than liquid.

This means it can be loaded onto ships in greater quantities and that there is less friction when it’s moving through pipes and, subsequently, into geological storage sites.

How safe is it to transport carbon?

It’s no riskier to transport CO2 via pipeline or ship than it is to transport oil and natural gas, and existing oil and natural gas pipelines can be repurposed to transport CO2.

To enable the safe use of CO2 pipelines, CCS projects must ensure captured CO2 complies with strict purity and temperature specifications, as well as making sure CO2 is dry and free from impurities that could impact pipelines’ operations.

Whilst there are a growing number of CCS transport systems around the world, CCS is still is a relatively new field but research is underway to identify best practises, materials and technologies to optimise the process. This includes research around potential risks and techniques for leak mitigation and remediation.

In the UK, the Health and Safety Executive regulates health, safety, and integrity issues for all natural gas pipelines, which are covered by legislation. The legislation ensures the safety of pipelines, pressure systems and offshore installations and can serve as a strong foundation for CO2 transport regulation.

Fast facts

Go deeper 

What is the carbon cycle?

What is the carbon cycle?

All living things contain carbon and the carbon cycle is the process through which the element continuously moves from one place in nature to another. Most carbon is stored in rock and sediment, but it’s also found in soil, oceans, and the atmosphere, and is produced by all living organisms – including plants, animals, and humans.

Carbon atoms move between the atmosphere and various storage locations, also known as reservoirs, on Earth. They do this through mechanisms such as photosynthesis, the decomposition and respiration of living organisms, and the eruption of volcanoes.

As our planet is a closed system, the overall amount of carbon doesn’t change. However, the level of carbon stored in a particular reservoir, including the atmosphere, can and does change, as does the speed at which carbon moves from one reservoir to another.

What is the role of photosynthesis in the carbon cycle?

Carbon exists in many different forms, including the colourless and odourless gas that is carbon dioxide (CO2). During photosynthesis, plants absorb light energy from the sun, water through their roots, and CO2 from the air – converting them into oxygen and glucose.

The oxygen is then released back into the air, while the carbon is stored in glucose, and used for energy by the plant to feed its stem, branches, leaves, and roots. Plants also release CO2 into the atmosphere through respiration.

Animals – including humans – who consume plants similarly digest the glucose for energy purposes. The cells in the human body then break down the glucose, with CO2 emitted as a waste product as we exhale.

CO2 is also produced when plants and animals die and are broken down by organisms such as fungi and bacteria during decomposition.

What is the fast carbon cycle?

The natural process of plants and animals releasing CO2 into the atmosphere through respiration and decomposition and plants absorbing it via photosynthesis is known as the biogenic carbon cycle. Biogenic refers to something that is produced by or originates from a living organism. This cycle also incorporates CO2 absorbed and released by the world’s oceans.

The biogenic carbon cycle is also called the “fast” carbon cycle, as the carbon that circulates through it does so comparatively quickly. There are nevertheless substantial variations within this faster cycle. Reservoir turnover times – a measure of how long the carbon remains in one location – range from years for the atmosphere to decades through to millennia for major carbon sinks on land and in the ocean.

What is the slow carbon cycle?

In some circumstances, plant and animal remains can become fossilised. This process, which takes millions of years, eventually leads to the formation of fossil fuels. Coal comes from the remains of plants that have been transformed into sedimentary rock. And we get crude oil and natural gas from plankton that once fell to the ocean floor and was, over time, buried by sediment.

The rocks and sedimentary layers where coal, crude oil, and natural gas are found form part of what is known as the geological or slow carbon cycle. From this cycle, carbon is returned to the atmosphere through, for example, volcanic eruptions and the weathering of rocks. In the slow carbon cycle, reservoir turnover times exceed 10,000 years and can stretch to millions of years.

How do humans impact the carbon cycle?

Left to its own devices, Earth can keep CO2 levels balanced, with similar amounts of CO2 released into and absorbed from the air. Carbon stored in rocks and sediment would slowly be emitted over a long period of time. However, human activity has upset this natural equilibrium.

Burning fossil fuel releases carbon that’s been sequestered in geological formations for millions of years, transferring it from the slow to the fast (biogenic) carbon cycle. This influx of fossil carbon leads to excessive levels of atmospheric CO2, that the biogenic carbon cycle can’t cope with.

As a greenhouse gas that traps heat from the sun between the Earth and its atmosphere, CO2 is essential to human existence. Without CO2 and other greenhouse gases, the planet could become too cold to sustain life.

However, the drastic increase in atmospheric CO2 due to human activity means that too much heat is now retained between Earth and the atmosphere. This has led to a continued rise in the average global temperature, a development that is part of climate change.

Where does biomass fit into the carbon cycle?

One way to help reduce fossil carbon is to replace fossil fuels with renewable energy, including sustainably sourced biomass. Feedstock for biomass energy includes plant material, wood, and forest residue – organic matter that absorbs CO2 as part of the biogenic carbon cycle. When the biomass is combusted in energy or electricity generation, the biogenic carbon stored in the organic matter is released back into the atmosphere as CO2.

This is distinctly different from the fossil carbon released by oil, gas, and coal. The addition of carbon capture and storage to bioenergy – creating BECCS – means the biogenic carbon absorbed by the organic matter is captured and sequestered, permanently removing it from the atmosphere. By capturing CO2 and transporting it to geological formations – such as porous rocks – for permanent storage, BECCS moves CO2 from the fast to the slow carbon cycle.

This is the opposite of burning fossil fuels, which takes carbon out of geological formations (the slow carbon cycle) and emits it into the atmosphere (the fast carbon cycle). Because BECCS removes more carbon than it emits, it delivers negative emissions.

Fast facts

  • According to a 2019 study, human activity including the burning of fossil fuels releases between 40 and 100 times more carbon every year than all volcanic eruptions around the world.
  • In March 2021, the Mauna Loa Observatory in Hawaii reported that average CO2 in the atmosphere for that month was 14 parts per million. This was 50% higher than at the time of the Industrial Revolution (1750-1800).
  • There is an estimated 85 billion gigatonne (Gt) of carbon stored below the surface of the Earth. In comparison, just 43,500 Gt is stored on land, in oceans, and in the atmosphere.
  • Forests around the world are vital carbon sinks, absorbing around 7.6 million tonnes of CO2 every year.

Go deeper