Tag: investors

Refurbishing a 300-tonne generator core within the heart of a power station

Electricity generator

At the centre of Drax Power Station, in a corner of the cavernous turbine hall, is a white box. The inside of this box is spotlessly clean. Not only are its white walls free of dirt, they are free of even dust. But there is one outlier inside this sterile environment: a 300-tonne chunk of industrial equipment.

This equipment is a generator core – the central component for converting the mechanical energy to electrical power.

Electricity generator core

The core is driven by the steam turbine. Ninety tonnes of generator rotor spinning at 3,000 rpm with just millimetres of clearance from the core produce 660 megawatts (MW) of electricity. That’s enough – 645 MW when exported from Drax into the National Grid – to power a city the size of Sheffield.

The generator is a serious piece of industrial machinery. And despite the pristine conditions, this white box is the site of serious engineering.

A process normally done by large-scale manufacturers in dedicated factories, ‘rewinding’ a generator core – as the process is called – is a major operation.

No other UK facility is capable of doing this complex job. So it’s here, in a white box, in the middle of an operational power station in North Yorkshire, that a team of engineers is undertaking work that will secure the generator’s use for decades. This is the Drax rewinding facility.

Turbine structure

How a generator works

A generator consists of two main components, a spinning rotor and a stationary stator. The rotor, which is directly connected to the main turbine and spins 50 times every second, sits inside the stator. Both the stator and the rotor contain a large number of copper coils known as windings. These windings are what carry the electrical current.

The rotor acts like a very strong electromagnet, which, when a voltage is applied, produces a strong magnetic field. Because the rotor sits inside the stator, this magnetic field intersects the copper windings of the stator and induces a voltage in these windings, allowing current to flow.  This voltage is then brought out of the stator and passed through a step-up transformer, where it is increased to a level suitable for transmission through the National Grid.

The stator core is made from many elements with hundreds of thousands of laminations, 84 water-cooled insulated copper bars, each 11 metres long and weighing 200kg forming the windings, various insulating materials, blocks, packing, wedges and condition monitoring equipment.

Generator stators can operate for decades without fault.

DIY at Drax

In 2016, a team of engineers at Drax embarked on a project to construct a facility to rewind the stator on site. This required cross-company collaborative working to design and construct this huge purpose built facility.

Contamination can cause operational problems, so the team built a sterile, white room within the turbine hall – one of just two places within the power station with foundations strong enough to support the incredible 450 tonnes required for the rewind facility. Designed to hold the stator core and the conductor bars, air is forced out of the room to limit the possibility of contamination to the core during the rewind.

“When the unit is in service it becomes magnetic, so any metallic particles left in the space will be attracted to the core,” explains Drax electrical engineer Thomas Walker. “Once magnetised, any metal particles could be drawn in, burrowing into the insulation and core lamination.”

This is the kind of event that an electricity generator wants to avoid – but when it happens, be prepared to fix it.

Roll with it

When Drax’s stators were manufactured in the 1980s, completing their construction relied on manual handling techniques. Modern day facilities, however, rotate the core to minimise human contact.

It took just six months for a partnership involving Drax, Siemens and ENSER to manufacture what could be the largest stator rollers in the world and within that time, ship them from the US to North Yorkshire.

With the rollers installed, the next step was to move in the core. Two of the turbine hall’s cranes, each capable of lifting 150 tonnes, were combined to lift it, hoisting the core onto the mechanical ‘roller’ within the rewind facility.

Once in place, the roller rotates the core, allowing for the copper conductor bars to be safely removed and inserted. Despite this mechanical help, the removing and replacing of each one is still at its heart a human job.

“We still need 10 men to physically move the conductor bars with lifting aids, which makes it not an easy process,” says Walker. Using this method, the bars weighing 200kg each can be safely and precisely fitted into the core.

Electricity turbine generator at Drax

Opting for in-house

Rewinding a stator is a complex process. However, when the time, logistics and costs of shipping the core to Siemens – the German-based manufacturers – was factored in, the decision to do the work at Drax Power Station was an easy one.

A 300-tonne core is not easy to transport and the Highways Agency do not like things like that on the roads. They’d want us to use waterways” says Drax lead engineer Mark Rowbottom. “Logistically it just wasn’t worth it. It’s too much money to move and ship that weight to Germany. So, we looked at what we could do onsite.”

More than just an economical and logistical decision and with the UK’s diminishing manufacturing facilities, Drax is now equipped to support generator rewinds for many years to come. Building and operating the rewind facility was a project that leveraged the engineering abilities of Drax employees. They are increasingly doing engineering traditionally outsourced to equipment manufacturers.

“The experience we have gained and the close working relationship we have established with Siemens enables us to support the generator for the remaining life of the station,” says Rowbottom.

“To see the core in that many pieces and stripped down to this level is very rare,” says Walker, who began working at the plant as an apprentice. Of the 84 conductor bars, half have been fitted, and the team is scheduled to complete the stator rewind in early 2018. “I never thought I’d do anything like this but am proud to say that I’ve done it.”

What will happen to the carbon price after 2020?

Great Britain’s electricity is cleaner than ever. As wind, solar, biomass and hydro continue to make up more and more of our energy mix, the power system edges ever closer to being entirely decarbonised. The GB power system has leapt up the big economies’ low carbon league table from 20th in 2012 to seventh in 2016.

But this shift to lower-carbon power isn’t owed only to growing renewable electricity capacity. A fall in gas prices has helped and importantly, government policy has ensured coal power generation has become increasingly uneconomical vs electricity produced with gas (gas and coal compete for contracts to supply power to the National Grid).

Introduced in 2013, Great Britain’s Carbon Price Floor sets the minimum price on carbon emissions. A stricter policy than the EU’s volatile EU Emissions Trading System (EU ETS) which puts a much lower price on carbon dioxide (CO2) emissions, the Carbon Price Support as the British policy is also known tops up the EU ETS. Together, they have had a significant impact. According to Aurora Energy Research, the Carbon Price Floor is a major factor in coal generation emissions falling.

In Great Britain, the Carbon Price Floor (CPF) is currently capped at £18 per tonne of CO2 and the EU ETS sits at around £5 t/CO2 – meaning power generators and heavy industry pay around £23 t/CO2 altogether. When initially formulated by the coalition government in 2010, it was intended the CPF would reach £30 per tonne by 2020 and £70 per tonne by 2030. However, the EU ETS has since fallen therefore the UK government chose to cap the carbon price support at £18 per tonne until 2020.

Now, as we reach the end of the decade, questions remain as to what will happen to this crucial mechanism post-2020. Will the government price coal off the system once and for all or will the fossil fuel make an unlikely comeback?

Four visions of carbon pricing’s future

In its research, Aurora has identified four potential future scenarios for the UK’s carbon pricing strategy.

Status Quo: If the UK chooses to continue supporting the phase-out of coal and promotes low-carbon investment, the Carbon Price Floor will steadily increase post-2020, reaching an estimated £52 per tonne by 2040. In this scenario the UK’s carbon pricing structure remains about £18 per tonne higher than the EU ETS which is currently around £5 per tonne.

Catch-up: In the post-Brexit landscape (whatever it may look like) the UK may choose to seek parity with the EU over decarbonisation. In this scenario, the total UK carbon price remains flat with EU ETS, which rises until convergence. In this scenario the UK and EU’s price per tonne of carbon reaches £35 by 2040.

Low Priced Carbon: In the event that the UK government removes the carbon price from 2021 and the EU ETS never recovers beyond its 2017 level, the short-term effects could be a drop in the price of coal power and cheaper energy bills. CO2 emissions increase in the UK as demand for power rises in the late 2020s and beyond (as recently witnessed in the Netherlands where coal generation has increased, in part, due to a low EU ETS). The expected price per tonne of carbon could be as low as £6 by 2040 and investment in lower carbon and renewable forms of power generation stalls.

High Priced Carbon: In order to meet the UK’s fourth and fifth carbon budgets set by the Committee on Climate Change, this scenario sees the electricity system decarbonise more quickly, with coal removed as an energy source. The carbon price rises dramatically over the next two decades to hit £153 per tonne by 2040.

Stopping the coal comeback

Of these four scenarios, the steadily increasing prices of the Status Quo scenario could see the UK meet its power sector target within the fourth carbon budget of 100 g CO2-eq/kWh  – achieving a 51% reduction from 1990 emission levels by 2030. But Aurora found that keeping things as they are could see a radical swing the other way, some years earlier in its scenario: coal could make a comeback in the early 2020s.

In July this year, coal accounted for just 2% of electricity generation in Great Britain and in 2016 as a whole it accounted for 9%, producing the lowest amount of electricity since the start of World War II. Without solid growth of the Carbon Price Floor it could become a much more competitive fuel. This potential is further increased by a predicted rise in natural gas prices post-2020, when the current surplus of liquefied natural gas (LNG) is set to end.

If the government chooses not to set tough prices on carbon emissions, Aurora predicts that on average coal will account for 9% of electricity generation between 2021 and 2025 – a change in the declining coal power trend seen in recent years. A Low Carbon Price future would see coal grow to almost 12% of the total electricity generation mix during the same period.

By contrast, in the High Carbon Price scenario, coal is almost completely driven out of the energy system, accounting for an estimated 2% of electricity generation between 2021 and 2025.

Signalling to the future

What is crucial for British power generators at this stage is clarity beyond 2020, when the £18 per tonne cap ends. This can allow the industry to react to future carbon pricing and prepare for whatever future scenario the government is most likely to adopt.

If the government chooses to continue decarbonising the energy system in a significant way – as it should do – coal facilities can be converted to renewable or lower-carbon units, such as biomass or gas. New interconnectors, renewable sources, storage facilities and demand-side response will also need to be installed at a greater capacity to meet the energy system’s demands.

As the amount of low carbon generation continues to grow, it will increasingly be the marginal generator. This means that power stations such as Drax’s biomass units, which run with an 87% lower carbon footprint compared to coal across their entire supply chain, could be used to meet the last megawatt hour (MWh) of demand – and this would see the carbon price having a diminishing impact on the wholesale price of power.

As has already been shown, the Carbon Price Floor is one of the most effective ways to reduce Great Britain’s electricity emissions. But to continue this impressive progress, the government needs to use it appropriately to set a path towards a decarbonised future.

In October, Drax joined British energy company SSE, climate NGO Sandbag and others to write to Chancellor Philip Hammond, calling on him to back the Carbon Price Floor beyond 2020 and in doing so, provide certainty for businesses investing in lower carbon and renewable capacity. Read the letter here

What happened to Great Britain’s electricity over summer 2017

What a difference four years can make. Back in 2012 the carbon intensity of Great Britain’s electricity production was almost 600g per kWh (kilowatt hour). Jump forward to 2016 and this has halved to make Britain one of the least carbon-intense power systems in the world.

This good news comes from Electric Insights, a quarterly research paper on Britain’s power system, commissioned by Drax and written by Imperial College London academics. The latest report’s key finding is just how much Britain’s energy system has decarbonised compared to other nations.

Here is what the data from Q3 2017 tell us about Great Britain’s energy system today and how it will continue to change into the future.

 Climbing the low carbon league tables

Comparing the electricity mix and carbon intensity of nations producing more than 100 TWh (terawatt hours) a year, the report has established a ‘league table’ that tracks the progress (or regress) of countries’ efforts. It shows Britain’s energy system has decarbonised at a greater pace than any other nation.

In 2012 Britain was ranked 20th, sitting mid-table alongside Italy and Saudi Arabia. But in the four years following, Britain rocketed up to become the seventh least-carbon intense energy system in the world in 2016.

The 47% drop in carbon intensity is the biggest change of any of the countries analysed, and puts Britain just behind Norway and Sweden, which have the resources to support substantial hydropower generation, as well as nuclear-dependent France.

The most any other country moved was eight places – in the opposite direction to Britain. This was the Netherlands where new coal power stations were built at a time when use of coal across England, Scotland and Wales combined reduced by around 80%. The additional coal capacity and power generated from that fuel in the Netherlands led to a dramatic increase in carbon emissions.

A major force in helping drive Britain’s rapid move away from coal is the Carbon Price Floor. This currently sits at £18 per tonne of carbon dioxide (CO2) emitted, on top of just £5 per tonne in the rest of Europe.

Read the full analysis at The low carbon electricity league table and view full chart here.

Importing problems?

Imports are making up an increasing amount of the UK’s electricity mix, and in July and August they reached an all-time high of 9%. The majority (60%) of these imports in Q3 2017 came from France, while 30% was from the Netherlands and 10% from Ireland.

However, while importing electricity from overseas has become crucial in helping meeting demand and maintaining a flexible grid, questions remain around the practice’s carbon intensity.

France generates much of its electricity from low-carbon nuclear sources, however, Irish and Dutch exports rely heavily on fossil fuels. As a result, the electricity Britain imported had a 30% higher carbon intensity than that generated domestically – 314 vs 245 g/kWh over the last 12 months.

Over the next five years 7 GW (gigawatts) of new interconnectors are planned for construction (including with France, Norway and Denmark), which could increase electricity imports to provide as much as 10-24% of the country’s electricity. As these continue to play a bigger role in our electricity mix, it is important we ensure it comes from lower-carbon sources where possible and supports the continuing decarbonisation of electricity rather than ‘exporting emissions’.

Read two articles on the topic of interconnectors in Electric Insights:

Coal firmly relegated to the bench

The nose-dive of coal generation in Britain since 2012 highlights just how out-of-favour the carbon-intensive fossil fuel has become in the energy system. Now it occupies a role solely as a backup to low-carbon and renewable sources.

Over the summer months coal generation stayed at a historic low of 1.9% of total electricity generation. Between April and August Britain’s 14 GW of installed coal stations only produced 0.6 GW in an average hour. This follows a year of milestones in the decline of coal, most notably in April, when Britain saw its first day without burning any coal since 1882.

But this is not to say it has disappeared completely. As temperatures dropped in late summer, coal was called upon to meet sudden demand. On September 19th 40% of the coal fleet was called upon to produce 5.7 GW on average across that day, showing that even as coal capacity plummets – dropping from 28 GW in 2012 to 14 GW in 2016 – it still plays a necessary role in helping meet peaks in demand.

What’s clear, however, is that this role is only growing smaller and smaller as our power system continues to decarbonise and flexible energy technologies replace it.

Read the full article here: Coal output bottoms out

Explore the data in detail by visiting ElectricInsights.co.uk

Commissioned by Drax, Electric Insights is produced independently by a team of academics from Imperial College London, led by Dr Iain Staffell and facilitated by the College’s consultancy company – Imperial Consultants.

Appointment of new non-executive director

RNS Number :5094W
DRAX GROUP PLC
(Symbol: DRX)

The Board of Drax Group plc (“Drax”) is pleased to announce that Nicola Hodson is to be appointed as a Non-Executive Director, with effect from 12 January, 2018.

Nicola served as a Non-Executive Director at Ofgem(1) between January 2015 and July 2017. She is currently Vice President, Global Sales and Marketing, Field Transformation at Microsoft(2), having worked with the company in various roles since 2008, including Chief Operating Officer of its UK business and leading its UK public sector business.

Prior to Microsoft(2) she held senior roles at Siemens, CSC, Ernst & Young and British Nuclear Fuels. She has also been a member of TechUK’s(3) Board since 2012 and was previously a board member of the UK Council for Child Internet Safety (UKCCIS) (4) and the Child Exploitation and Online Protection group (CEOP)(5).

Commenting on the appointment, Philip Cox, Chairman of Drax, said:  “The directors are delighted to welcome Nicola to the Board. Her broad experience gained in the technology, business transformation, energy and consulting sectors, across a range of strategy, marketing and change roles will provide real value as Drax delivers on its strategy to help change the way energy is generated, supplied and used in the UK.”

Nicola added: “The energy sector is changing fast so this is an exciting time to be joining Drax’s Board. I believe Drax is well-placed to grow and support the decarbonisation of the UK economy through low carbon generation and fuel sourcing. I am particularly inspired by the prospect of joining a leading challenger-brand which puts customers at the heart of the business and allows them to maximise the opportunities presented by the emerging energy landscape.”

Nicola has also been appointed as a member of the Company’s Audit, Remuneration and Nomination Committees.

Enquiries:

Drax Investor Relations: Mark Strafford

+44 (0) 1757 612 491

Media:

Drax External Communications: Matt Willey

+44 (0) 1757 612 285

Website: www.drax.com/uk

Notes:

  1. Ofgem is a non-ministerial government department and an independent National Regulatory Authority. Its objective is to protect the interests of electricity and gas consumers by promoting value for money, promoting security of supply and sustainability, supervise markets and competition and regulate government schemes.
  2. Microsoft (Nasdaq “MSFT” @microsoft) is the leading platform and productivity company for the mobile-first, cloud-first world, and its mission is to empower every person and every organization on the planet to achieve more.
  3. TechUK is an organisation that represents its 900 members and drives links with Government.
  4. The UK Council for Child Internet Safety (UKCCIS) is a group of more than 200 organisations drawn from across government, industry, law, academia and charity sectors that work in partnership to help keep children safe online.
  5. The Child Exploitation and Online Protection Group (CEOP) works with child protection partners across the UK and overseas to identify the main threats to children and coordinates activity against these threats to bring offenders to account. We protect children from harm online and offline, directly through National Crime Agency led operations and in partnership with local and international agencies.

END

What is an ‘advantaged’ fuel, and why use them?

Drax Power Station produces 17% of the UK’s renewable electricity, but it has a long history as a coal-fired generator. And while today around 70% of Drax’s output is from renewable biomass, there are still instances when coal is used – for example, at times of high demand, such as in the winter months.

Beyond just meeting demand for power, maintaining some operational coal capacity until it can be replaced with more biomass or gas, also allows Drax to offer flexibility and grid stability through ancillary services such as inertia, reactive power and frequency management.

Ensuring these remaining coal units run as efficiently as possible is key to Drax being able to economically provide support services to the grid. And for this, alongside more conventional coals it uses something termed as advantaged fuels.

What are advantaged fuels?

Advantaged fuels are coals outside of Drax’s conventional specification that are slightly more affordable than standard coals. Blending advantaged fuels with standard coal before burning allows generators to remain economical while meeting demand.

At Drax, these include off-specification coal and mine remnants such as pond fines, which are produced from former deep mine sites . These are offered at lower prices than standard fuels because they often have a lower calorific value, meaning they produce less energy when burned, or are difficult to work with and transport.

The benefit, however, is that power stations are able to ramp up generation as well as provide essential system services while remaining economical.

Getting the balance right

Each time an advantaged fuel is used, the right blend must be found depending on how much and what type is being utilised to ensure maximum efficiency and reliability.

This requires coordination across Drax between the fuel procurement team, aiming to source these lower-priced fuels, the materials handling and power generation teams who must quickly understand and resolve any issues surrounding fuel blends and the trading team, responsible for selling into the power market.

The cost savings achieved from using advantaged fuels combined with the highly efficient units Drax Group operates, helps keep costs down and that means lower electricity costs for everyone.

But this doesn’t mean these fuels will be used for the long term. Drax is continuing to decarbonise its power generation business. At Drax Power Station where three of its six power units have been upgraded to low carbon biomass, trials were underway in the spring and summer of 2017 to test a lower cost way of converting one of the three remaining coal units to run on compressed wood pellets. The Selby, North Yorkshire site is currently consulting with its local community on plans to repower one or two coal units to run on another flexible fuel – natural gas. If constructed, the gas power plant could be joined by a large battery storage facility – one which could provide immediate power and system services to the country’s electricity system while the gas turbines power up in the minutes that follow.

Coal’s days in the UK are numbered – and this is certainly a good thing – but while it remains a necessary part of meeting winter demand and balancing the system, advantaged fuels will be key to keeping it an affordable one too.

Appointment of Interim Chief Financial Officer

RNS Number : 7736U
DRAX GROUP PLC
(Symbol: DRX)

Following the recent announcement that Will Gardiner will succeed Dorothy Thompson as Chief Executive Officer of Drax Group from 1 January 2018, the Board is progressing a process to appoint a permanent Chief Financial Officer (CFO) as soon as practicable.

In the meantime, Den Jones has been appointed as Interim CFO of the Group from 1 November 2017 and will work with Will Gardiner to ensure a smooth transition.

Den was previously CFO of Johnson Matthey, a FTSE 100 specialty chemicals company and has held senior and executive positions, including Interim CFO, in BG Group, a major global energy company. He spent the early part of his career in banking and professional services with Citibank and PwC where he held a number of specialist financial management positions.

Enquiries:

Investor Relations:

Mark Strafford

+44 (0) 1757 612 491

Media:

External Communications:

Ali Lewis

+44 (0) 1757 612165

Website: www.drax.com/uk

END

How Drax is boosting jobs and the economy throughout the UK

Whether powering homes across Britain or helping stabilise the national grid, Drax Power Station’s impact to our electricity network is far reaching. But it doesn’t stop at generating and supplying power.

A new report by Oxford Economics, commissioned by Drax, has found that in addition to its important role powering Britain, Drax Group also provides an economic boost to areas across the country.

Here are three ways Drax Group contributed to the UK economy in 2016. 

£1.67 billion added to UK GDP

Drax Group contributed an estimated £1.67 billion to UK gross domestic product (GDP) in 2016, an increase from £1.24 billion in 2015. Of that figure, £301 million was added directly – as a result of the group’s own activities such as the generating and selling of power.

And while this is an impressive 6.1% increase on 2015, the numbers are even more significant when looking at the benefit beyond the group’s core activities.

In 2016, Drax Group’s spending with external suppliers such as rail freight wagon manufacturer WH Davis and IMServ, which supplies Automated Meter Reading technology to Opus Energy, reached £872 million. A further £36m was spent by these suppliers across their own supply chain to help them provide their services to Drax.

There is an even greater impact when considering how this money filters through employees and suppliers into local retail, leisure and service economies. Something which is especially important when the number of jobs Drax supports is taken into account.

18,500 jobs supported across the country

Drax Group directly employed more than 2,000 people in 2016, but across the country it supports far more – 18,500, a significant increase from the 14,150 of 2015.

These jobs are primarily in high-skilled manufacturing, engineering, construction, IT, professional business services and transport. While 3,650 of these were in Drax Power Station’s native Yorkshire and Humber area, this year saw the group’s overall impact extend much further. 

Opus Energy employees holding meeting in Northampton, 2019

 An impact beyond the ‘Northern Powerhouse’

Roughly a quarter (£419 million) of Drax’s total contribution to UK GDP was generated in the Yorkshire and the Humber region. When the North West and North East were included, the company impacted the northern economy to the tune of £577m and supported over 6,000 jobs.

Yorkshire and the Humber was closely followed by the East of England, the home of Haven Power, which saw the second highest impact – registering more than £200 million contributed in GVA – and London and the East Midlands.

This is thanks in part to the growing activities of Drax Group companies. Both Haven Power and Opus Energy (which became a part of Drax Group in February 2017), are helping the UK move towards a low carbon future by supplying an increasing amount of British companies with renewable power. With offices in Ipswich, Oxford, Northampton and Cardiff, Haven Power and Opus Energy highlight how Drax Group businesses are direct drivers for local GDP and employment. Opus Energy supported 1,600 jobs and £130 million in GVA in Wales, while Haven Power contributed £232 million to the East of England.

These numbers are noteworthy, but what makes them all the more significant is how this translates into tax revenue. Operations at Drax Group generated an estimated £327 million for the UK’s public purse – equivalent to the salaries of almost 14,000 nurses or 11,900 teachers.

As the group continues to grow – adding new power generation assets to the national electricity transmission system and helping more businesses use renewable power – Drax can increase its positive impact on the UK’s economy and help to make the country’s low-carbon future a reality more quickly.

To find out more about how Drax has benefited the UK’s economy, visit draximpact.co.ukThe full 2016 report can be downloaded here. Interested in a career at Drax Group? Please visit Careers to find out more.

How electric vehicles will impact global power demand

The future of cars is electric. Globally, governments are laying out plans to ban the sale of petrol and diesel-powered cars, while the falling prices of batteries will serve to make the vehicles more affordable to consumers and more profitable for manufacturers.

A recent report by Bloomberg increased its earlier 2016 forecast for electric vehicle (EV) adoption. It now estimates that by 2040, 54% of new car sales and 33% of the global car fleet will be electric.

This vision of the future points to considerably better air quality in urban and roadside environments across the world. But while EVs emit none of the tailpipe fumes of traditional fossil fuel-powered cars, there is still potential for associated emissions depending on how that electricity is generated.

For example, if the growing demand caused by EVs is met with fossil fuels, then ‘well-to-wheel’ emissions are still in play. However, as electricity grids decarbonise and become smarter and more efficient, EVs will become cleaner. Researchers at Imperial College London have shown that in the UK, year-round average emissions from EVs have fallen by half in the last four years thanks to cleaner electricity generation.

What this greater reliance on electricity for transport will certainly do, however, is massively drive up global power demand. Investment will be needed not only in electricity generation but also in smart technology that can allow the charging and, eventually, usage of EVs to be managed efficiently.

The growing demand of EVs

The Bloomberg report states global electricity consumption from EVs is expected to grow from just 6 TWh in 2016 to 1,800 TWh by 2040. While the figure represents a massive increase in the electricity required to power EVs, 1,800 TWh represents just 5% of the projected global power consumption in 2040. By comparison, the UK as a whole consumed just 304 TWh of electricity in 2016.

This clearly highlights the widespread need for global investment in electricity generation on the whole, beyond just what will be required to power EVs. However, the unique challenge EVs pose is less how they recharge but when they will recharge.

Smoothing spikes

Assuming supporting infrastructure and technology progress to enable widespread on-street and home charging, then the demand for electricity to charge EVs will mostly likely come in the evening. This could result in additional pressure being placed on energy generators and national grids due to mass EV charging.

Utilities and regulators will need to implement policies to encourage off-peak charging (for example overnight) and spread out the demand from EVs. One way these spikes will be managed is through ‘time-of-use’ rates to encourage drivers to charge their vehicles at off-peak times to avoid higher electricity bills. However, technological improvements will also help to manage the demand EVs place on energy systems.

Tech solutions

Smart charging tech is one of the most important aspects of this in allowing cities, utilities and consumers to automate vehicle charging at times when overall demand is lower. Storage technology will also play a key role in managing increasing demand on both consumer and operator ends.

Adoption of home power storage systems is expected to grow as fast as solar photovoltaic energy has in recent years, which will enable consumers with home solar arrays to store energy and charge vehicles at times to avoid peak-hour charges. On the supplier end, advancement in storage technology will allow generators to deliver electricity above their usual capacity and meet spikes in demand.

Autonomous vehicles

While the report suggests autonomous vehicles will not have a significant impact over the next decade, the longer-term influence of self-driving vehicles will have direct consequences on demand.

Autonomous cars will be able to drive in a way that is significantly more efficient than humans by driving closer together and interacting with the surrounding city to prevent congestion. With widespread adoption, this greater efficiency would mean cars would use less energy and require less time to recharge.

However, ownership of these types of vehicles will likely be shared, particularity in urban environments, resulting in fewer overall cars on the roads and, ultimately, plateauing or even declining demand from EVs in the 2040s and beyond.

Globally, investment is needed to meet and support the growth of EVs over the next two decades. Governments and businesses must begin to roll out charging infrastructure and clean energy solutions to meet future demand, as well as the smart city technology that will enable the mass adoption and eventual automation of EVs.

Will Gardiner to succeed Dorothy Thompson as Chief Executive of Drax Group

RNS Number : 3929R
DRAX GROUP PLC
(Symbol: DRX)

Drax Group plc announces that Will Gardiner, currently Group Chief Financial Officer, is to be appointed as Group Chief Executive with effect from 1 January 2018. The appointment results from Dorothy Thompson’s decision to step down after 12 successful years as Group Chief Executive. Dorothy will leave the Group at the end of 2017.

Will joined Drax as Group Chief Financial Officer and a member of the Group Board in November 2015. The Board has kept succession planning well under review and his new appointment comes after a thorough selection process involving internal and external candidates.

Drax Chairman, Philip Cox said: “We are delighted Will is to become Chief Executive. He has been a key architect of our new strategy and is a focused, innovative and engaging leader. His appointment is a natural progression after two years working alongside Dorothy developing an ambitious strategy which I am confident will create significant benefits for all Drax’s stakeholders.

“On behalf of the Board I would like to thank Dorothy for her enormous contribution to Drax. She transformed the business during her tenure and leaves the Group in a strong position with a clear strategy that lays the foundations for further success in a changing energy sector.”

Will Gardiner said: “I am thrilled to be appointed as Group Chief Executive at this exciting time for Drax. The changes we are seeing in the UK energy sector are unprecedented and we have an opportunity to thrive while doing the right thing for the UK energy market. Drax’s people have demonstrated repeatedly their ability to deliver transformational change and I’m delighted to be working with them to build on Dorothy’s strong legacy.”

Dorothy Thompson said: “Drax Group plays a strategic role in the UK electricity sector generating around 16% of UK renewable electricity, is a world leader in the production of wood pellets and is a leading challenger brand in the supply of electricity to businesses. I retire knowing the Group is in excellent shape: it has the right strategy, the right team and in Will, the right leader.”

The Board will now commence a process to appoint a new Group Chief Financial Officer and will also review the option to make an appointment on an interim basis. 

No other disclosure obligations arise under paragraphs (1) to (6) of LR 9.6.13 R of the UK Listing Authority’s Listing Rules in respect of Will Gardiner’s appointment as Chief Executive of Drax Group plc.

Enquiries:

Drax Investor Relations:

Mark Strafford

+44 (0) 1757 612 491

+44 (0) 7730 763 949

Media:

Drax External Communications:

Matt Willey

+44 (0) 1757 612 285

+44 (0) 7711 376 087

Website: www.drax.com/uk

Notes:

Will Gardiner joined Drax in November 2015 as Group Chief Financial Officer and a member of the Group Board. He is currently responsible for Finance, Strategy, and IT Systems.

Prior to joining Drax Will was Chief Financial Officer of CSR plc, a global semiconductor business.  He had previously been a Divisional Finance Director of BSKYB and Chief Financial Officer of Easynet Group plc.

At both CSR and Easynet Will’s focus was on driving transformational change to take advantage of new market opportunities. He is also a non-executive member on the Board of Qardio plc, a wireless medical devices company. Will is also a Trustee of the Institute for War & Peace Reporting, a London-based charity that supports local journalists and civic activists in areas of crisis and change around the world.

Will graduated from Harvard University with a BA Magna Cum Laude in Russian and Soviet Studies and from Johns Hopkins University with an MA in International Relations. He spent the early part of his career in corporate finance with Citibank and JP Morgan.

END