Tag: Yorkshire

A net zero UK will be good for people and the planet

Peak district walker

For the UK to reach net zero CO2 emissions by 2050 and do its part in tackling the biggest challenge of our time, all sectors of the economy must reduce their emissions and do it quickly.

I believe the best approach to tackling climate change is through ‘co-benefit’ solutions: solutions that not only have a positive environmental impact, but that are economically progressive for society today and in the future through training, skills and job creation.

As an energy company, this task is especially important for Drax. We have a responsibility to future generations to innovate and use our engineering skills to deliver power that’s renewable, sustainable and that doesn’t come at a cost to the environment.

Our work on Zero Carbon Humber, in partnership with 11 other forward-thinking organisations, aims to deploy the negative emissions technology BECCS (bioenergy with carbon capture and storage), as well as CCUS (carbon capture, usage and storage) in industry and power, and ramp up hydrogen production as a low carbon fuel. These are all essential technologies in bringing the UK to net zero, but they are also innovative projects at scale that can benefit society and the lives of people in the Humber, and around the UK.

New jobs in a new sector

The Humber region has a proud history in heavy industries. What began as a thriving ship building hub has evolved to include chemicals, refining and steel manufacturing. However, these emissions-intensive industries have grown increasingly expensive to operate and many have left for countries where they can be run cheaper, leading to a decline in the Humber region.

If they are not decarbonised, these industries will face an even greater cost. By 2040, emitters could face billions of pounds per year in carbon taxes, making them less competitive and less attractive for international investment.

Deploying carbon capture and hydrogen are essential steps towards modernising these businesses and protecting up to 55,000 manufacturing and engineering jobs in the region.

Capturing carbon at Drax: Delivering jobs, clean growth and levelling up the Humber. Click to view executive summary and case studies from Vivid Economics report for Drax.

A report by Vivid Economics commissioned by Drax, found that carbon capture and hydrogen in the Humber could create and support almost 48,000 new jobs at the peak of the construction period in 2027 and provide thousands of long term, skilled jobs in the following decades.

As well as protecting people’s livelihoods, decarbonisation is also a matter of public health. In the Humber alone, higher air quality could save £148 million in avoided public health costs between 2040 and 2050.

I believe the UK is well position to rise to the challenge and lead the world in decarbonisation technology. There is a clear opportunity to export knowledge and skills to other countries embarking on their own decarbonisation journeys. BECCS alone could create many more jobs related to exporting the technology and operational know-how and deliver additional value for the economy. As interest in negative emissions grows around the world, the UK needs to move quickly to secure a competitive advantage.

A fairer economy

This is in many ways the start of a new sector in our economy – one that can offer new employment, earnings and economic growth. It comes at just the right time. Without intervention to spur a green recovery, the COVID-19 crisis risks subjecting long-term economic damage.

Being at the beginning of the industrial decarbonisation journey means we also have the power to shape this new industry in a way that spreads the benefits across the whole of the UK.

We’ve previously seen sector deals struck between the government and industry include equality measures. For example, the nuclear industry aims to count women as 40% of its employees by 2030, while offshore wind is committed to sourcing 60% of its supply chain from the UK.

Wind turbines at Bridlington, East Yorkshire

At present, the Humber region receives among the lowest levels of government investment in research and development in the UK, contributing to a pronounced skills gap among the workforce. In addition, almost 60% of construction workers across the wider Yorkshire and Humber region were furloughed as of August 2020.

A project such as Zero Carbon Humber could address this regional imbalance and offer skilled, long term jobs to local communities. That’s why I welcome the Prime Minister’s announcement of £1bn investment to support the establishment of CCUS in the Humber and other ‘SuperPlaces’ around the UK.

As the Government’s Ten Point Plan says, CCUS can ‘help decarbonise our most challenging sectors, provide low carbon power and a pathway to negative emissions’. 

Healthier forests

The co-benefits of BECCS extend beyond our communities in the UK. We aim to become carbon negative by 2030 by removing our CO2 emissions from the atmosphere and abating emissions that might still exist on the UK’s path to net zero.

Background. Fir tree branch with dew drops on a blurred background of sunlight

This ambition will only be realised if the biomass we use continues to be sourced from sustainable forests that positively benefit the environment and the communities in which we and our suppliers operate.

Engineer working in turbine hall, Drax Power Station, North Yorkshire

Engineer working in turbine hall, Drax Power Station, North Yorkshire

I believe we must continuously improve our sustainability policy and seek to update it as new findings come to light. We can help ensure the UK’s biomass sourcing is led by the latest science, best practice and transparency, supporting healthy, biodiverse forests around the world; and even apply it internationally.

Global leadership

Delivering deep decarbonisation for the UK will require collaboration from industries, government and society. What we can achieve through large-scale projects like Zero Carbon Humber is more than just the vital issue of reduced emissions. It is also about creating jobs, protecting health and improving livelihoods.

These are more than just benefits, they are the makings of a future filled with opportunity for the Humber and for the UK’s Green Industrial Revolution.

By implementing the Ten Point Plan and publishing its National Determined Contributions (NDCs) ahead of COP26 in Glasgow next year, the UK continues to be an example to the world on climate action.

Jobs, skills, zero emissions – the economic need for carbon capture by Drax

Engineer working inside Drax Power Station

The Humber Estuary is one of the most distinctive features of the UK’s eastern coastline. Viewed from above, it is a crack in the land where the North Sea merges with England – it’s this connection to the sea that has defined it as a region and led to its rich industrial history.

But in recent years, as sectors such as heavy manufacturing move overseas, the Humber has begun to sink into economic decline. These challenges are now being exacerbated by COVID-19 – almost 60% of workers in the Yorkshire and the Humber construction industry were furloughed in August 2020.

Stimulation is needed to rejuvenate the Humber and prevent lasting economic scars on the region and its working-age population. Decarbonisation offers the opportunity to rebuild the region for the 2020s and decades ahead.

Technologies that have been identified as essential for the UK to reach its legally-binding commitment of net zero greenhouse gas emissions by 2050 include:

  • Carbon capture usage and storage (CCUS) – trapping, transporting and storing or recycling carbon dioxide (CO2) from industrial processes and energy generation
  • Bioenergy with carbon capture and storage (BECCS) – carbon removal from renewable, sustainable biomass power generation that leads to negative emissions
  • Hydrogen production – switching processes from natural gas to this zero-emissions fuel

Engineer working inside power stationThe Humber has unique capabilities that positions it as a hub for developing all three.

Zero Carbon Humber (ZCH), the partnership between a number of leading companies (including Drax), aims to bring together these essential technologies and create the foundations from which the region’s emissions-heavy industries can regain their competitive edge, create jobs and rejuvenate the area.

A new report by Vivid Economics for Drax investigates the potential economic impact of carbon capture and hydrogen. It concluded that nearly 48,000 jobs could be created and supported in the industrial cluster at the peak of the construction phase in 2027.

It’s a chance to not just revitalise a powerhouse of Northern England, but to collaborate with other industrial clusters and build a UK-wide green economy ready to export globally and attract international business to the region.

Rejuvenating the Humber

The North Sea has helped forge Hull’s strong industrial heritage of ship building and fishing. In the 1950s the flat lands of the south bank enabled post-war industries such as refining chemicals and steel to thrive.

“The region’s economy is built around the ports and accessibility to Europe and the North Sea,” explains Pauline Wade, Director of International Trade at the Hull and Humber Chamber of Commerce. “They are the biggest ports in the UK in terms of tonnage, and the energy and chemical industries hinge on materials coming in and going out of them.”

But these are also emissions-intensive industries, and as a result the Humber has the highest CO2 emissions of any UK industrial region – emitting 30% more than the second largest industrial cluster. Decarbonisation is vital in modernising and protecting these sectors, and the 55,000 manufacturing jobs they support.

River Humber Sunset

“Decarbonisation brings opportunities. Many businesses in this region have that target very firmly set in their business plans,” says Beckie Hart, Regional Director of the Yorkshire and the Humber CBI (Confederation of British Industry). “Many are high polluters – they know that, but they are very keen to became part of the solution.”

Developing BECCS, CCUS and hydrogen, as well as building the infrastructure needed to capture and transport CO2, offers both immediate construction jobs and long-term skilled jobs.

The main construction period of the project would run from 2024 to 2031 and support up to 47,800 new jobs at its peak in 2027, when £3.1 billion a year would be added to the regional economy. These include up to 25,200 high quality jobs in construction and operations, as well as a further 24,400 supported across the supply chain and wider economy.

These construction roles include jobs such as welders, pipe fitters, machine installers and technicians – with immediate government backing, these jobs could be available in as little as four years. Ongoing operations will also create 3,300 long term, skilled jobs in the cluster in the early 2030s.

The supply chain needed to provide the materials and parts for the region’s industrial revitalisation will also support further indirect jobs. In fact, businesses of all kinds stand to benefit – the increased spending by workers also could support further jobs across businesses ranging from cafes to professional services. These indirect jobs go on to induce further employment and spending out across more of the economy.

Overall the report suggests an annual average of more than 7,000 indirect and around 10,800 induced jobs could be supported during the construction phase, with £452 million in indirect and £581 million in induced value added to the wider economy annually on average.

However, transformation is costly and today the Humber region receives among the lowest levels of government investment in research and development in the UK. This has contributed to a pronounced skills gap in the region, as opportunities decline, and more people fall out of the workforce.

Bridging the skills gap in the Humber

Projects such as ZCH depend on availability of skilled workforces to build and operate the next generation of energy technologies. However, the Humber currently has a low proportion of school leavers with the right qualifications to take on roles with specialist technical and practical skills.

This skills gap is only expected to get worse. The Government’s Working Futures model forecasts that from 2022 key sectors such as electricity and gas, engineering and construction in the region will require higher qualifications than are currently available in the local labour market.

The skills gap is also compounded by COVID-19. As it creates economic uncertainty it pushes more people out of work and further reduces skills in the workforce. This has a particularly pronounced impact on young people who are less established in careers, threatening to create a ‘COVID-Generation’ that feel discouraged and detached from the labour market.

But this is not an inevitability.

With the right intervention from government and business, the Humber’s workforce can be upskilled and drive a green recovery.

A number of different approaches are possible: apprenticeships have historically proved a valuable means of training the next generation of workers. Companies and schools should work together to highlight the opportunities of vocational training to school leavers.

“Universities and colleges must work a lot more closely with the businesses in the region to have an honest conversation about what they need,” explains Hart. “A good example is the Ron Dearing University Technical College. It’s a business-led college that has only been open about 18 months but has had great results from the students because they offer specific courses that the region’s employers actually need.”

Engineer within Drax Power Station

For older generations of workers who have been out of the labour force for extended periods of time ‘skills vouchers’ are a timely intervention. These work by offering grants to cover the cost of flexibly retraining, meaning long-term unemployed workers of any age can ease back into new types of jobs.

Training local people for the future is key to decarbonising the Humber and creating jobs, as well as protecting industries. But a net zero industrial cluster could also have an impact beyond just the Humber.

Carbon removal in Yorkshire and the Humber

The Committee on Climate Change (CCC) has made it clear that for the UK to reach net zero by 2050 CCUS and negative emissions from BECCS are essential, as is hydrogen as a zero-carbon source of fuel. These will be needed at scale across the UK, and in the Humber. They are already underway.

Engineer at BECCS pilot project within Drax Power Station

Engineer at BECCS pilot project within Drax Power Station

Drax Power Station is piloting BECCS technology and has proven it can deliver negative emissions. Generating electricity using biomass from sustainably managed forests that absorb CO2 is a carbon neutral process. As part of the power generation process, adding CCUS and capturing the CO2 emitted, storing it permanently under the North Sea turns the process into a carbon negative one.

Deploying BECCS across four of Drax’s generating units would support 10,304 jobs and create £673 million in value at the peak of the construction phase. When operations get underway as early as 2027, 750 permanent operations and maintenance jobs could be created. Drax aims to operate as a carbon negative power station by 2030.

Of the 10,491 jobs supported by deploying BECCS (10,300 at the peak), 6,367 of these would be within the project’s supply chain and wider economy (9,073 in 2028).

Such supply chains needed across the North of England offer further potential to establish Yorkshire and the Humber as a hub for decarbonisation technology.

Facilities such as an Advanced Manufacturing Research Centre (AMRC) have been proven to make regions of the UK more competitive locations for advanced industries. By bringing together business with universities, they can focus on sector-specific challenges for technical industries. By creating a manufacturing hub dedicated to research and innovation in a specific industry, AMRCs also encourage ‘crowing-in investments.’ This is when private sectors investments enter into a region in the wake of government spending.

A zero carbon technology-focused AMRC in the Humber would also position the region to offer decarbonisation skills and products to other industrial clusters in the UK and further afield.

From the Humber to the world

Up the north coast from the Humber is Net Zero Teesside, a neighbouring industrial cluster with its own aims for decarbonisation. Through collaboration with clusters such as this, ZCH can offer even wider reaching benefits and enable UK-wide carbon capture, negative emissions and hydrogen.

However, for the entire UK to reach net zero, clusters all across the country must decarbonise – the report suggests as much as 190 million tonnes (Mt) CO2 could be captured and stored every year across the country.

Beyond just the clusters themselves 193,000 jobs could be created at the peak for UK deployment in 2039. These jobs would add £13.9 billion in value to the economy.

Under the Humber Bridge

Building a strong zero carbon economy based around the combined strengths of BECCS, CCUS and hydrogen can provide the UK with a world-leading export. At a time when countries across the globe all face the same decarbonisation challenges, successfully building clusters like ZCH will allow the UK to export knowledge, skilled labour, technology and services around the world.

“As a port city, Hull has always had an international influence. The chamber of commerce was set up in 1837 by the merchant adventurers who were seafaring traders. That history is inbuilt into the local DNA,” says Wade. “Today, we’re trying to create the environment for international companies to invest and locate in the Humber.”

It serves as a further example of how investing decisively in projects such as Carbon Capture by Drax and CCUS and hydrogen clusters such as Zero Carbon Humber today will bring long term economic benefits, taking the UK from a green recovery to a world-leading green industrial powerhouse.

“The Humber has evolved from the fishing industry to a generator of high-emissions products like steel, chemicals and power,” explains Hart. “Now it is keen to be the clean corner and teach everyone else how to decarbonise. There is a single vision of where we want to go and how they want to get there jointly.”

Read the full report (PDF), executive summary and press release.

How do you keep a 1.2 tonne steel ball in prime condition?

There are 600 giant balls at Drax Power Station. Each one weighs 1.2 tonnes – roughly the same as a saloon car – and is designed for one simple, but very specific, purpose: to pulverise.

Every day thousands of tonnes of biomass and coal are delivered to the power station to fuel its generators. But before this fuel can be combusted, it must be ground into a powder in pulverising mills so it burns quicker and more efficiently. It’s the giant balls that do the grinding.

And although these balls may be incredibly durable, the constant smashing, crushing and pulverising they go through on a daily basis can take its toll. Maintaining the 600 balls across the power station’s 60 mills is a vital part of keeping the plant running as effectively as possible.

Surviving the pulveriser

Each of the six generating units at Drax (three biomass and three coal) has up to 10 mills that feed it fuel, all of which operate at extreme conditions. Inside each one, 10 metal balls rotate 37 times a minute at roughly 3 mph, exerting 80 tonnes of pressure, crushing all fuel in its path.

Air is then blasted in at 190 degrees Celsius to dry the crushed fuel and blow it into the boiler at a rate of 40 tonnes per hour. To survive these extremities, the balls must be tough.

Drax works with a local foundry in Scunthorpe, Lincolnshire to manufacture them. First, they are cast as hollow orbs of nickel steel or chrome iron and then smoothed to within one millimetre of being perfectly spherical.

After 8,000 hours of use, engineers check how rapidly they’re wearing down by measuring their thickness using ultrasound equipment and, if deemed to be too thin (which usually occurs after about 50,000 hours of use), replace them.

For this, they must first remove the top of the mill – including the grinding top ring – and then individually lift out and replace each massive ball. Those that are removed are typically shipped back to Scunthorpe to be recycled.

Transforming for a decarbonised future

When Drax Power Station was first built in the 1970s, the mills were designed to only crush coal, but since it was upgraded to run primarily on biomass, in the form of sustainable wood pellets, they have been adapted to work with the new fuel.

For the most part, this requires only minor changes – the primary difference is that coal is harder to fully pulverise. Coal typically does not get entirely ground down in the first cycle, so a classifier is needed in the mill to separate the heavier particles and recirculate them for further grinding.

The process of switching one mill from biomass to coal takes about seven days and nights. This work was carried out on Unit 4’s mills ahead of this winter, following biomass trials in the spring and summer of 2017. Now that the decision has been made to permanently upgrade that fourth power generation unit, converting one of its 10 mills from coal to biomass later in 2018 will take about twice as long.

Using the same essential equipment and process for both fuels helps to quicken the pace of decarbonisation at Drax Power Station as the UK moves to end the production of unabated coal-fired electricity by 2025. Come seven years from now, one thing will remain consistent at the huge site near Selby, North Yorkshire: the giant pulveriser mills will continue their tireless, heavy-duty work.

North Yorkshire tops chart for renewable energy

A new survey from the Green Alliance and Regen SW shows that Selby in North Yorkshire produces the most renewable energy of any area in England and Wales. As you can see, Drax’s home tops the chart by a large margin.

That’s because between three and four per cent of the UK’s electricity is generated from sustainable biomass here at Drax power station.

We’ve already converted half the station to use compressed wood pellets. That half of Drax has reduced its carbon emissions by more than 80 per cent as a result.

But there’s so much more Drax could do to help the UK get more coal off the grid. And if the Green Alliance’s next data visualization pitted renewables against fossil fuels, a renewable-only Drax as our country’s biggest power station would give low carbon technologies an even bigger share than would be the case today.

Drax can not only generate more renewable power ourselves, but also help solar and wind power to cope with demand as some of the older coal, gas and nuclear plant retire over the coming years.

Moving towards a balanced mix of renewables including further biomass upgrades at Drax could save bill payers billions of pounds found research carried out by NERA and Imperial College London.

This was commissioned by Drax to establish the ‘true’ cost of the main forms of renewable energy – wind, solar and biomass.

The UK is already far below the European average when it comes to using wood for energy.

If the government made the right decision and levelled the playing field for biomass in the UK, Drax could help our country climb the table, meet our national climate change targets more quickly and contribute to saving bill payers billions of pounds. Upgrading from coal to wood pellets is also ensuring Drax Group – which employs more than 1,400 people – has a real future at the heart of the Northern Powerhouse.

However it’s not just for government to change the status quo – businesses have a role to play too. Many UK businesses have made firm commitments to limit and reduce their impact on the environment. For all, their use of energy is a critical area to consider and address. Some of the biggest electricity users such as Thames Water and Manchester Airport Group are increasingly demanding renewable electricity. Drax Group’s Haven Power is proud to offer the only 100% guaranteed renewable electricity product in the market to businesses big and small.

Perhaps that’s what the Green Alliance’s next index could investigate – which businesses have taken practical steps towards a renewable future.