Tag: about us

Climate change is the biggest challenge of our time

Drax Group CEO Will Gardiner

Climate change is the biggest challenge of our time and Drax has a crucial role in tackling it.

All countries around the world need to reduce carbon emissions while at the same time growing their economies. Creating enough clean, secure energy for industry, transport and people’s daily lives has never been more important.

Drax is at the heart of the UK energy system. Recently the UK government committed to delivering a net-zero carbon emissions by 2050 and Drax is equally committed to helping make that possible.

We’ve recently had some questions about what we’re doing and I’d like to set the record straight.

How is Drax helping the UK reach its climate goals?

At Drax we’re committed to a zero-carbon, lower-cost energy future.

And we’ve accelerated our efforts to help the UK get off coal by converting our power station to using sustainable biomass. And now we’re the largest decarbonisation project in Europe.

We’re exploring how Drax Power Station can become the anchor to enable revolutionary technologies to capture carbon in the North of England.

And we’re creating more energy stability, so that more wind and solar power can come onto the grid.

And finally, we’re helping our customers take control of their energy – so they can use it more efficiently and spend less.

Is Drax the largest carbon polluter in the UK?

No. Since 2012 we’ve reduced our CO2 emissions by 84%. In that time, we moved from being western Europe’s largest polluter to being the home of the largest decarbonisation project in Europe.

And we want to do more.

We’ve expanded our operations to include hydro power, storage and natural gas and we’ve continued to bring coal off the system.

By the mid 2020s, our ambition is to create a power station that both generates electricity and removes carbon from the atmosphere at the same time.

Does building gas power stations mean the UK will be tied into fossil fuels for decades to come?

Our energy system is changing rapidly as we move to use more wind and solar power.

At the same time, we need new technologies that can operate when the wind is not blowing and the sun is not shining.

A new, more efficient gas plant can fill that gap and help make it possible for the UK to come off coal before the government’s deadline of 2025.

Importantly, if we put new gas in place we need to make sure that there’s a route through for making that zero-carbon over time by being able to capture the CO2 or by converting those power plants into hydrogen.

Are forests destroyed when Drax uses biomass and is biomass power a major source of carbon emissions?

No.

Sustainable biomass from healthy managed forests is helping decarbonise the UK’s energy system as well as helping to promote healthy forest growth.

Biomass has been a critical element in the UK’s decarbonisation journey. Helping us get off coal much faster than anyone thought possible.

The biomass that we use comes from sustainably managed forests that supply industries like construction. We use residues, like sawdust and waste wood, that other parts of industry don’t use.

We support healthy forests and biodiversity. The biomass that we use is renewable because the forests are growing and continue to capture more carbon than we emit from the power station.

What’s exciting is that this technology enables us to do more. We are piloting carbon capture with bioenergy at the power station. Which could enable us to become the first carbon-negative power station in the world and also the anchor for new zero-carbon cluster across the Humber and the North.

How do you justify working at Drax?

I took this job because Drax has already done a tremendous amount to help fight climate change in the UK. But I also believe passionately that there is more that we can do.

I want to use all of our capabilities to continue fighting climate change.

I also want to make sure that we listen to what everyone else has to say to ensure that we continue to do the right thing.

This is how you make a biomass wood pellet

Compressed wood pellets

Wood has been used as fuel for tens of thousands of years, but this wood – a compressed wood pellet – is different. It’s the size of a child’s crayon and weighs next to nothing, but when combined with many more it is a smart solution to generating cleaner electricity compared to coal.

Wood pellets like these are being used at Drax Power Station to generate electricity and power cities. Not only are they renewable and sustainable, but because they are compressed, dried and made from incredibly fine wood fibres, they’re also a very efficient fuel for power stations.

This is how a compressed wood pellet is made at the Drax Biomass Amite BioEnergy Pellet Plant in Mississippi.

The wood arrives to the yard

Wood arrives at the plant via truck and is sent to one of four places: the wood storage yard, the wood circle (where wood is primed for processing), the piles of sawdust and woodchip, or straight into processing.

Bark is removed and kept for fuel

Logs are fed into a debarker machine, which beats the logs together inside a large drum to remove the bark. The bark is put aside and used to fuel the woodchip dryer, used later in the process.

Thinned wood stems become small chips

The logs – low-value fibre from sustainably managed working forests – need to be cut down into even smaller pieces so they can then be shredded into the fine material needed for creating pellets. Inside the wood chipper multiple blades spin and cut the logs into chips roughly 10mm long and 3mm thick. The resulting chips are fed into the woodchip pile, ready for screening.

Chips are screened for quality and waste is removed

Chipped down wood can include waste elements like sand, remaining bark or stones that can affect pellet production. The chips are passed through a screener that removes the waste, leaving only ideal sized wood chips.

The biggest hairdryer you’ve ever seen

The wood chips need to have a moisture level of between 11.5% and 12% before they go into the pelleting process. Anything other than this and the quality of the resulting pellets could be compromised. The chips enter a large drum, which is blasted with hot air generated in a heater powered by bark collected from the debarker. The chips are moved through the drum by a large fan, ready for the hammer mill.

Wood pellet Hammer Mill

Small woodchips become even smaller woodchips

Inside the hammer mill there’s a spinning shaft mounted with a series of hammers. The wood chips are fed into the top of the drum and the spinning hammers chip and shred them down into a fine powdery substance that is used to create the pellets.

Putting the chips under pressure – a lot of pressure

The shredded woodchip powder is fed into the pellet mill. Inside, a rotating arm presses the powdered wood fibre through a grate featuring a number of small holes. The intense pressure heats up the wood fibre and helps it bind together as it passes through the holes in a metal ring dye, forming the compressed wood pellets.

Resting and cooling down

Fresh pellets from the mill are damp and hot, and need to rest and cool before transporting off site. They’re moved to large storage silos kept at low temperatures so the pellets can cool and harden, ready for shipping.

One of the biggest domes you’ve ever seen

This is the final stage before shipping. Specially designed and constructed storage domes are used to store the wood pellets after they are transported to the Mississippi River, Louisiana and before they make their way across the Atlantic to the UK.