Tag: ships and shipping

The electric transport revolution

With rapid technological improvements and falls in battery prices, improving performance and reducing the cost, experts predict that by 2050, 90% of new-build cars will be powered by electricity.

However, it’s not only roads where transport is decarbonising; electricity may soon power more of the world’s trains, plus its planes and boats.

Taking trains forward

The electrification of the rail industry has arguably been in the making for a lot longer than EVs but there’s still progress to be made. Trains are already one of the most-efficient modes of long-distance transport, and Network Rail claims electric models’ carbon emissions are 20% to 35% lower than diesel trains. Electric trains also accelerate and brake faster than diesel-powered models, and cause less wear to tracks.

Electrified trains are already commonplace in many parts of the world – Japan’s famously fast and reliable Shinkansen railways are electric. Meanwhile in the UK, less than 50% of the rail network is electrified, with Transport Secretary Chris Grayling’s recent ‘pause’ on development casting doubts on previous ambitious plans to electrify 850-miles of track.

Nevertheless, advancements are still being made to enable the sector to utilise solar energy as an alternative to the national power grid. The concept would prove cost effective and reduce the carbon footprint of trains even further.

According to a report by climate change charity 10:10 and researchers at Imperial College’s Energy Futures Lab, rail companies could cut their annual running costs by millions of pounds through installing their own trackside solar panels to power electric trains directly. With companies spending around £500 million a year on power, the savings on self-generation would enable them to cut fares for passengers, as well as emissions.

Take off for electric planes

Of all transport modes, air travel has made the least progress in electrification but there’s hope yet. Airbus, Rolls-Royce and Siemens recently teamed up to develop the technology needed to create electrically-powered aircraft. The companies plan to fly a demonstrator aircraft with one of its existing jet engines replaced by an electric unit in 2020.

Paul Stein, chief technology officer at Rolls-Royce, said: “Aviation is the last frontier of the electrification of transport. It could lead to a step change in the way we fly with greater efficiency and less noise.”

These proposed hybrid-electric aircraft are not powered by on-board batteries like EVs but with a gas turbine that generates electricity to drive the propellers. This could reduce fuel consumption by up to 10%, predicted Mark Cousin, head of flight demonstration at Airbus.

Moving to electric aircraft would also help the aviation industry meet EU targets of a 60% reduction in emissions of carbon dioxide (CO2) by 2020, as well as 90% less nitrogen oxides and a noise reduction of around 75%.

UK-based airline EasyJet also announced it could be flying electric planes within a decade and is teaming up with US firm Wright Electric to build battery-powered aircraft.

According to EasyJet, the move would enable battery-powered aeroplanes to travel short-haul routes such as London to Paris and Amsterdam, and Edinburgh to Bristol. Wright Electric is aiming for an aircraft range of 335 miles, which would cover the journeys of about a fifth of EasyJet passengers. The challenge comes in making lithium-ion batteries light and safe enough for the air.

The airline said this was the next step in making air travel less harmful for the environment, after cutting carbon emissions per passenger kilometre by 31% between 2000 and 2016. Wright Electric claims that electric planes will save up to 15% in fuel burn and CO2 emissions, be 50% quieter and 10% cheaper for airlines to buy and operate, with the cost saving potentially passed on to passengers.

Testing new waters

There’s a lot of buzz coming out of the maritime industry too. Every year marine transport emits 1,000 million tonnes of CO2, which is why the International Maritime Organization (IMO) has agreed that a reduction of 50% should come by 2050 compared with 2008 levels. Although the deal fell short of more ambitious targets preferred by those ranging from the European Union to environmental NGOs, the IMO did also commit to pursue efforts toward phasing out CO2 emissions entirely.

As Paris Agreement goals to cut carbon dioxide emissions loom, businesses around the world are innovating.

 

Small fleets of battery-powered boats designed for fjords and inland waterways in Norway, Belgium and the Netherlands are preparing to set sail, including some able to run autonomously without a crew.

Dutch company Port-Liner is also gearing up to launch the first fully-electric, emission-free barges in Europe. Dubbed ‘Tesla’ ships, Port-Liner Chief Executive Officer Ton van Meegen claims these barges would be the first in the world to sail on carbon-neutral batteries. The first six barges alone are expected to remove 23,000 trucks from the roads annually in the Netherlands, replacing them with zero-emission methods of transport.

China also recently launched an electric cargo ship to haul coal which, whilst not doing much for its ambitions to cut pollution, will at least eliminate shipping emissions from diesel engines. Electric ships may not yet be the norm globally but progress is underway to cut the 2.5% of global greenhouse emissions that result from the maritime transport industry.

Once a far-flung fantasy in some areas, electrified transport is fast becoming a reality. EVs and rail are leading the way, but it’s clear the electric transport revolution has a long way to travel.

5 incredible numbers from the world’s largest biomass port

Since its origins the Port of Immingham has held close links with the UK’s rail and energy networks.

It was the Humber Commercial Railway and Dock company, along with the Great Central Railway, that first established the dock, completing it in 1912 to serve its primary purpose of exporting the most important fuel of the time: coal.

Today, Immingham is the UK’s largest port by tonnage, and while these transport connections endure, they’ve changed with the times. The port is now connected to modern rail infrastructure and helps run a renewable energy system.

Immingham is one of a number of UK ports that receives shipments of wood pellets which are used to generate renewable electricity at Drax Power Station in Yorkshire. With 20,000 tonnes of wood pellets arriving at Drax every day, here are the numbers that tell the story of how the port of Immingham keeps more biomass coming in than any other in the world:

£135 million revamping for renewables

The port began to get serious about renewable energy in 2013 when an investment of around £135m kick-started the creation of the Immingham Renewable Fuels Terminal – the largest biomass handling facility in the world.

Developed by the Associated British Ports as part of a 15-year deal with Drax, the revamp of the former coal port saw an update of its unloading, storage, rail and road facilities to make it biomass-ready.

Getting those 60,000 tonnes of biomass pellets from ship to train to Drax requires tight supply chain systems designed especially for this task.

2,300 tonnes of biomass unloaded every hour

A key component of Immingham is its continuous ship unloaders. Replacing the port’s grab cranes in 2013, these two structures use a combination of suction and an Archimedes screw to discharge 2,300 tonnes of biomass an hour from docking ships.

The continuous unloaders are bespoke for Immingham and designed to keep operating at a constant rate as the Humber’s tide rises and falls. Biomass is drawn up through the unloaders to a conveyer that then takes it all the way from the jetty to one of the port’s eight silos.

120 Olympic-sized swimming pools of storage

Unlike coal, which can be stored in the open air, biomass must be kept dry. Immingham stores wood pellets in eight silos, each capable of holding 25,000 tonnes of biomass.

With the port doubling its storage space from four silos in early 2016, the site’s total capacity now comes in at 336,000m3 – the equivalent of more than 120 Olympic-sized swimming pools.

Here the biomass can be stored for any time between a couple of days and a couple of months, depending on Drax’s demand.

72 trains heading to Britain’s biggest power station every week

The next leg of the journey for the wood pellets sees them moved along the conveyer to board Drax’s specifically designed trains.

Immingham’s rail facilities and Drax’s train wagons were developed to automate the loading process for maximum efficiency. Trains slow down to half a mile per hour as they enter the loading bay where sensors and magnets open the hatch doors of the wagons and close them when they’re full.

The automation of this process allows a 25-wagon train to be filled in just 37 minutes. In total, 12 trains can pass through each day, meaning the port can send 72 trains to Drax every week.

With each hopper’s full load at 71.6 tonnes of compressed wood pellets, each train can carry between 1,700 and 1,800 tonnes. It takes the total biomass reaching the power station from Immingham to a maximum of 130,000 tonnes each week.

£400 million added to the local economy

Drax’s contribution to the Yorkshire and Humber region includes 3,650 jobs and a £419.2 million economic impact.

This is primarily the result of the impact made by Drax Power Station to the region, however, its support of other businesses along its supply chains means its economic contribution is felt far beyond its Selby site.

In 2016, Drax indirectly supported 1,800 jobs in Yorkshire and the Humber region at facilities such as Immingham. Its indirect economic contribution came to £117 million, as the region’s biomass industry became increasingly important.

Find out about another major UK port that has been transformed thanks to renewable energy. How does biomass get shipped to the UK? Read the story of one of the US ports sending wood pellets to UK shores.

Building a 21st century port

In its long history, the Port of Liverpool has dealt with a number of industries. It’s a port characterised by its ability to adapt to the needs of the time. In 1715 it emerged as one of the world’s first ever wet docks. In the 18th century it was used as a hub for the slave trade.

When slavery was abolished in the early 19th century, Liverpool switched to bringing in the goods of the thriving Empire, such as cotton. When goods like cotton dried up, it switched to the fuel of the Industrial Revolution: coal.

Now as the world (and the UK government) moves away from fuels like coal and towards lower-carbon and renewable resources, the Port of Liverpool needed to adapt once again.

Gary Hodgson, Chief Operating Officer at Peel Ports, explains: “About three years ago everyone was asking, ‘What happens after coal?’”

Biomass silos at the Port of Liverpool

What happens after coal?

Peel Ports is one of the biggest operators of Liverpool’s shipping infrastructure, including Liverpool Port. Seeing that the future of coal was finite, it recognised there was a need for a port that could bring in alternative, renewable fuels.

At the same time Drax was looking for a logistics partner to facilitate the importing of compressed wood pellets. Since 2009 Drax Power Station had begun a process of upgrading its coal-fired boilers to run on sustainable biomass, sourced from huge, well-established working forests. More than this, it had plans to set up its own pellet manufacturing plants in the US South and needed to import large quantities of wood pellets.

The relationship with Peel Ports and Liverpool was obvious. This began a £100 million investment that helped transform the region’s port-station transport infrastructure.

“It’s about working in partnerships with companies,” says Hodgson. “Working this way helps develop solutions that really work.”

The central element of the partnership between Drax and Peel Ports was a radical redesigning of the technical infrastructure. Not only do compressed wood pellets have fundamentally different physical properties to other fuels like coal, they are more combustible and need to be handled safely.

For the three-million-tonne-capacity facility that Peel Ports and Drax wanted to build, innovative supply chain solutions had to be developed.

A tool used to transfer compressed biomass pellets

Shifting biomass in bulk

The first challenge was getting the high-density pellets off giant ships. For this, Peel and Drax designed a solution that uses an Archimedean screw – a long tube with a spiral winding up the inside that allows liquids, or materials that can behave like a liquid (like wood pellets), to defy gravity and travel upwards.

At the top of the screw, the pellets are emptied onto a conveyor belt and carried to one of three purpose-built silos tailored to safely storing thousands of tonnes of biomass.

Here the pellets wait until another conveyor belt deposits them onto specially-design biomass trains where they are transported across the peaks of the Pennines to Drax Power Station near Selby in North Yorkshire.

Each step at the port is automated, designed with supreme efficiency in mind by a team of Drax and Peel Port engineers. End-to-end, port to power station, the whole process can take as little as 12 hours.

Drax biomass ship in the Port of Liverpool

A new chapter for the north

In the varied history of the Port of Liverpool the new facility is another chapter, one that is helping transform the logistics infrastructure and the economic growth of the North West.

Now open and operational, the facility directly employs 50 people – around 500 additional contractors have worked on the project during its construction and development. More than that, it’s an investment in the country’s energy future. It secures a fourth port for Drax –  three others are on the east coast – helping with security of supply.

“We made this investment because we recognised this as the future of the energy mix of the country,” Hodgson explain. “We can’t just rely on one form of power – there has to be an energy mix and we see biomass as a key part of that.”

Renewables: better together

There’s more pressure than ever to reduce carbon dioxide emissions from electricity generation. And no one is keener than the team here at Drax Power Station to make it happen. In fact, we’ve been doing it for a decade. But we need the right support to finish the job.

  • We upgraded our turbines between 2007-12 to save one million tonnes of CO2 emissions.
  • We’ve converted half our station to run on compressed wood pellets instead of coal – reducing emissions by up to 86 per cent.
  • Our friends in the North of England have invested millions of pounds to help us make that happen, through building new infrastructure at our landing and loading facilities at the Port of Tyne, the new port at Liverpool, at Hull and at Immingham.
  • We’ve designed and commissioned our own rolling stock with Lloyds Register Rail to ensure that the compressed wood pellets can be transported to the power station in the most energy-efficient way possible.

And while many jobs in the North of England are being lost with the planned closure of a number of older coal-fired power stations, we continue to employ over a thousand people directly here in North Yorkshire.

In fact, it’s no exaggeration to say that Drax is a genuine Northern Powerhouse, to borrow a phrase from the Chancellor of the Exchequer.

Which is why we hope he and his colleagues in Government will listen when we say that we’re seriously concerned that the planned auctions for new green energy could result in bill payers missing out on savings of over £2 billion.

The Government has committed to three further renewable energy auctions that will happen over the next few years. The first of them is already planned for later in 2016.

As far as we know, those auctions will only be open to offshore wind and perhaps also something being referred to as ‘less established technologies’.

But independent research published by NERA and Imperial College London suggests that a ‘single technology’ approach could waste a significant amount of money.

The research was commissioned by Drax to establish the ‘true’ cost of the main renewable energy technologies – wind, solar and biomass.

As a result, economists conclude that hard working families and businesses could enjoy significant savings if these auctions were opened up to include other renewables.

But the sun doesn’t always shine and the wind doesn’t always blow. This makes wind and solar intermittent energy technologies. Backup power is needed when the weather’s not right or when demand is high.

Naturally, this standby energy isn’t free. Someone has to pay for it.

But those additional costs are not currently included in the way that the Government calculates how much support the different kinds of renewable energy require.

And the ICL/NERA research shows that when the true costs are added in, offshore wind is actually the most expensive form of renewable energy.

The affordable solution is to convert existing power stations to use compressed wood pellets in place of coal. This balanced approach also allows more offshore wind and solar onto our electricity network without the need for more fossil fuels to provide overall reliability. More biomass conversions can also help the UK end coal by Energy Secretary Amber Rudd’s 2025 target date.

That’s what we mean when we say Drax needs the right support to finish the job. We’re asking the Government to consider the true cost of bringing new renewable capacity on stream. And then to add sustainable biomass to the auctions for new contracts.

That decision could save bill payers up to £2bn. It could safeguard thousands of direct and indirect jobs in Yorkshire and the North of England. And it will give our country the reliable, renewable power we need when others just can’t deliver it.