Tag: sustainability

Sustainability, certified

Drax Morehouse woodchip truck

Of all the changes to Drax Power Station over the last decade, perhaps the biggest is one you can’t see. Since converting three of its six generating units from coal to run primarily on compressed wood pellets, Drax has reduced those units’ greenhouse gas (GHG) emissions by over 80%.

And while this is a huge improvement, it would mean nothing if the biomass with which those reductions are achieved isn’t sustainably sourced.

For this reason, Drax works with internationally-recognised certification programmes that ensure suppliers manage their forests according to environmental, social and economic criteria.

Thanks to these certification programmes, Drax can be confident it is not only reducing GHG emissions, but supporting responsible forestry from wherever wood fibre is sourced.

Sustainability certifications

The compressed wood pellets used at Drax Power Station come from various locations around the world, so Drax relies on a number of different forest certification programmes, the three main ones being the Sustainable Forest Initiative (SFI), Forest Stewardship Council® (FSC®)1 and the Programme for the Endorsement of Forest Certification (PEFC).

The programmes share a common goal of demonstrating responsible forest management, but adoption rates vary by region. European landowners and regulators are most familiar with the FSC and national PEFC standards, while North American landowners generally prefer SFI and American Tree Farm System (also members of the PEFC family). In instances in which Drax sources wood pellets carrying these certifications, or in instances in which Drax purchase pellets sourced from certified forests, these certifications offer an additional degree of assurance that the pellets are sustainable.

Over 50% of the pellets used at Drax Power Station come from the southern USA, where SFI and American Tree Farm System are the most widely implemented certification programmes. Overall adoption levels in this region are relatively modest. However, the SFI offers an additional level of certification that can be implemented by wood-procuring entities, such as sawmills, pulp mills and pellet mills.

This programme is referred to as SFI Fiber Sourcing, and to obtain it, participants must demonstrate that the raw material in their supply chains come from legal and responsible sources. These sources may or may not include certified forests. The programme also includes requirements related to biodiversity, water quality, landowner outreach and use of forest management and harvesting professionals. Together, these certification systems have long contributed to the improvement of forest management practices in a region that provides Drax with a significant proportion of its pellets.

And since the SFI and ATFS programmes are endorsed by PEFC, North American suppliers have a pathway for their region’s sustainable forest management practices to be recognised by European stakeholders.

These certification programmes have been in use for many years. But with recent growth in the market for wood pellets, a new certification system has emerged to deal specifically with woody biomass.

Trees locked up in a bundle

New kid on the block

The Sustainable Biomass Program (SBP) was set up in 2013 as a certification system to provide assurance that woody biomass is sourced from legal and sustainable sources. But rather than replacing any previous forest certification programmes, it builds on them.

For example, SBP recognises the evidence of sustainable forest management practices gathered under these other programmes. However, the PEFC, SFI and FSC programmes do not include requirements for reporting GHG emissions, a critical gap for biomass generators as they are obligated to report these emissions to European regulators. SBP fills this gap by creating a framework for suppliers to report their emissions to the generators that purchase their pellets.

When a new entity, such as a wood pellet manufacturer, first seeks certification under SBP, that entity is required to assess its supply base.

Feedstock which has already been certified by another established certification programme (SFI, FSC®, PEFC or PEFC approved schemes) is considered SBP-compliant.

All other feedstock must be evaluated against SBP criteria, and the wood pellet manufacturer must carry out a risk assessment to identify the risk of compliance against each of the 38 SBP indicators.

If during the process a specific risk is identified, for example to the forest ecosystem, the wood pellet manufacturer must put in place mitigation measures to manage the risk, such that it can be considered to be effectively controlled or excluded.

These assessments are audited by independent, third party certification bodies and scrutinised by an independent technical committee.

In conducting the risk assessment, the wood pellet manufacturer must consult with a range of stakeholders and provide a public summary of the assessment for transparency purposes.

Sustainable energy for the UK

Counting major energy companies including DONG Energy, E.ON and Drax as members, the SBP has quickly become an authoritative voice in the industry. At the end of 2016, the SBP had 74 certificate holders across 14 countries – including Drax’s pellet manufacturing arm, Drax Biomass, in Mississippi and Louisiana.

It’s a positive step towards providing the right level of certification for woody biomass, and together with the existing forestry certifications it provides Drax with the assurance that it is powering the UK using biomass from legal and sustainable sources.

Like the fast-reducing carbon dioxide emissions of Britain’s power generation sector, it’s a change you can’t see, but one that is making a big difference.

Read the Drax principles for sustainable sourcing.

1 Drax Power Ltd FSC License Code: FSC® – C119787

Forests are more powerful than you think – here’s why

Almost one third of the earth’s land mass is covered by forests. That’s an area of around 4 billion hectares, or roughly four times the size of the US.

In addition to being a prominent feature across the global landscape, forests also play a significant role in how we live. They make the air cleaner in cities and absorb carbon from the atmosphere. They provide bio-diversity and habits for wildlife. They also provide essential forest products such as paper, building materials and wood pellets for energy.

To celebrate the UN’s International Day of Forests, we’re looking at some of the reasons why forests and wood fuel are more powerful than you might think.

They’re a major source of renewable energyFamily at home using renewable energy.

Nearly half of the world’s renewable energy comes from forests in the form of wood fuel. Roughly 2.4 billion people around the world use it for things like cooking, heating and generating electricity. In fact, about 50% of the total global wood production is currently used for these purposes.

However, it is critical that this resource is managed sustainably and responsibly. One of the key aims of the International Day of Forests is to encourage people to utilise their local forest resources sustainably to ensure it endures for future generations.

They can revitalise economiesA truck unloading.

Because wood fuel is such a widely used energy source, it also supports a healthy, vibrant industry. Roughly 900 million people work in the wood energy sector globally.

More than that, rural economies built on wood energy can be revitalised by modernisation, which can then stimulate local business. Investment can help finance better forest management, which in turn leads to forest growth, improvements in sustainability standards and in some cases, increased employment.

They can help mitigate climate changeYoung sapling forest.

The world’s forests have an energy content about 10 times that of the global annual primary energy consumption, which makes it a hugely useful resource in helping meet energy demand in a sustainable and renewable way.

When wood is used as fuel it releases carbon dioxide (CO2). However, if this fuel is drawn from a responsibly managed forest or sustainable system of growing forests this carbon is offset by new tree plantings. The only emissions produced therefore are the ones involved in transporting the wood itself. The US Food and Agriculture Organization predict that by 2030 forestry mitigation with the help of carbon pricing could contribute to reductions of 0.2 to 13.8 Gigatonnes (Gt) CO2 a year.

The biomass carbon story

There is an important difference between carbon dioxide (CO2) emitted from coal (and other fossil fuels) and CO2 emitted from renewable sources. Both do emit CO2 when burnt, but in climate change terms the impact of that CO2 is very different.

To understand this difference, it helps to think small and scale up. It helps to think of your own back garden.

One tree, every year for 30 years

Imagine you are lucky enough to have a garden with space for 30 trees. Three decades ago you decided to plant one tree per year, every year. In this example, each tree grows to maturity over thirty years so today you find yourself with a thriving copse with 30 trees at different stages of growth, ranging from one year to 30 years old.

At 30 years of age, the oldest has now reached maturity and you cut it down – in the spring, of course, before the sap rises – and leave the logs to dry over the summer. You plant a new seedling in its place. Through the summer and autumn the 29 established trees and the new seedling you planted continue to grow, absorbing carbon from the atmosphere to do so.

Winter comes and when it turns cold and dark you burn the seasoned wood to keep warm. Burning it will indeed emit carbon to the atmosphere. However, by end of the winter, the other 29 trees, plus the sapling you planted, will be at exactly the same stage of growth as the previous spring; contain the same amount of wood and hence the same amount of carbon.

As long as you fell and replant one tree every year on a 30-year cycle the atmosphere will see no extra CO2 and you’ll have used the energy captured by their growth to warm your home. Harvesting only what is grown is the essence of sustainable forest management.

If you didn’t have your seasoned, self-supplied wood to burn you might have been forced to burn coal or use more gas to heat your home. Over the course of the same winter these fuels would have emitted carbon to the atmosphere which endlessly accumulates – causing climate change.

Not only does your tree husbandry provide you with an endlessly renewable supply of fuel but you also might enjoy other benefits such as the shelter your trees provide and the diversity of wildlife they attract.

Mushroom - Brown cap boletus in autumn

No added carbon

This is a simplified example, but the principles hold true whether your forest contains 30 trees or 300 million – the important point is that with these renewable carbon emissions, provided you take out less wood than is growing and you at least replace the trees you take out, you do not add new carbon to the atmosphere. That is not true with fossil fuels.

It is true that you could have chosen not to have trees. You could instead build a wind turbine or install solar panels on your land. That would be a perfectly reasonable choice but you’ll still need to use the coal at night when the sun doesn’t shine or when the wind isn’t blowing. Worst of all you don’t get all the other benefits of a thriving forest – its seasonal beauty and the habitat that’s maintained for wildlife.

Of course, the wood Drax needs doesn’t grow in our ‘garden’. We bring it many miles from areas where there are large sustainably managed forests and we carefully account for the carbon emissions in the harvesting, processing and transporting the fuel to Drax. That’s why we ‘only’ achieve more than 80% carbon savings compared to coal.

Building a 21st century port

In its long history, the Port of Liverpool has dealt with a number of industries. It’s a port characterised by its ability to adapt to the needs of the time. In 1715 it emerged as one of the world’s first ever wet docks. In the 18th century it was used as a hub for the slave trade.

When slavery was abolished in the early 19th century, Liverpool switched to bringing in the goods of the thriving Empire, such as cotton. When goods like cotton dried up, it switched to the fuel of the Industrial Revolution: coal.

Now as the world (and the UK government) moves away from fuels like coal and towards lower-carbon and renewable resources, the Port of Liverpool needed to adapt once again.

Gary Hodgson, Chief Operating Officer at Peel Ports, explains: “About three years ago everyone was asking, ‘What happens after coal?’”

Biomass silos at the Port of Liverpool

What happens after coal?

Peel Ports is one of the biggest operators of Liverpool’s shipping infrastructure, including Liverpool Port. Seeing that the future of coal was finite, it recognised there was a need for a port that could bring in alternative, renewable fuels.

At the same time Drax was looking for a logistics partner to facilitate the importing of compressed wood pellets. Since 2009 Drax Power Station had begun a process of upgrading its coal-fired boilers to run on sustainable biomass, sourced from huge, well-established working forests. More than this, it had plans to set up its own pellet manufacturing plants in the US South and needed to import large quantities of wood pellets.

The relationship with Peel Ports and Liverpool was obvious. This began a £100 million investment that helped transform the region’s port-station transport infrastructure.

“It’s about working in partnerships with companies,” says Hodgson. “Working this way helps develop solutions that really work.”

The central element of the partnership between Drax and Peel Ports was a radical redesigning of the technical infrastructure. Not only do compressed wood pellets have fundamentally different physical properties to other fuels like coal, they are more combustible and need to be handled safely.

For the three-million-tonne-capacity facility that Peel Ports and Drax wanted to build, innovative supply chain solutions had to be developed.

A tool used to transfer compressed biomass pellets

Shifting biomass in bulk

The first challenge was getting the high-density pellets off giant ships. For this, Peel and Drax designed a solution that uses an Archimedean screw – a long tube with a spiral winding up the inside that allows liquids, or materials that can behave like a liquid (like wood pellets), to defy gravity and travel upwards.

At the top of the screw, the pellets are emptied onto a conveyor belt and carried to one of three purpose-built silos tailored to safely storing thousands of tonnes of biomass.

Here the pellets wait until another conveyor belt deposits them onto specially-design biomass trains where they are transported across the peaks of the Pennines to Drax Power Station near Selby in North Yorkshire.

Each step at the port is automated, designed with supreme efficiency in mind by a team of Drax and Peel Port engineers. End-to-end, port to power station, the whole process can take as little as 12 hours.

Drax biomass ship in the Port of Liverpool

A new chapter for the north

In the varied history of the Port of Liverpool the new facility is another chapter, one that is helping transform the logistics infrastructure and the economic growth of the North West.

Now open and operational, the facility directly employs 50 people – around 500 additional contractors have worked on the project during its construction and development. More than that, it’s an investment in the country’s energy future. It secures a fourth port for Drax –  three others are on the east coast – helping with security of supply.

“We made this investment because we recognised this as the future of the energy mix of the country,” Hodgson explain. “We can’t just rely on one form of power – there has to be an energy mix and we see biomass as a key part of that.”

How one company helped transform the biomass business

Westfield terminal

If asked to picture Canada, its beautiful forests often spring to mind. In fact, 38% of the country is covered by them. Little wonder that Canada has one of the world’s biggest lumber industries. But all that lumber milling means a lot of sawdust.

It was in this sawdust, and the other ‘waste’ products the milling process creates, that one fledgling Canadian company spotted an opportunity.

Making the most of waste

Started by two brothers in the 1980s, Pinnacle originally made animal feed for farmers – compressed pellets of grass and grain.

Then, in the late Eighties, after hearing about wood pellet production in Scandinavia, and taking a look at all the sawmilling residues being burned up around them, they had an idea for a new direction.

At the time the Canadian government was looking to make the sawmilling industry a lot cleaner and more sustainable. “There was a lot of fibre around that needed to find a home,” explains Vaughan Bassett, a senior executive with the company.

Canada needed a way to put to good use materials that were previously just thrown away or even burnt out in the open, releasing greenhouse gas emissions, and wood pellets seemed like a natural fit. Even better, because there was so much waste fibre around at the time, Pinnacle was able to get its raw material for free and help to avoid the unnecessary emissions. All it had to do was pick it up and take it away.

Pinnacle Lavington grand opening

Finding a new business model

Making the transition from feed pellets to wood pellets involved a lot of trial and error.

“There was a lot of entrepreneurial spirit that went into this thing,” says Bassett. “It was untried, untested, unknown and there was no real market. It was just a couple of entrepreneurs trying stuff out.”

Initially, Pinnacle produced its wood pellets for local domestic markets – people looking to heat their homes, local businesses, and schools that used wood burners. This is a particularly convenient and efficient form of fuel for communities in off-the-grid, remote areas of Canada. But Pinnacle was keen to grow and make an even greater impact.

Rising demand for sustainability

By the early 2000s, some in the power generation industry were starting to rethink their long-term futures, looking to shift from fossil fuels like coal to cleaner alternatives in order to meet the challenges of sustainable energy production.

Central to Pinnacle’s business is a commitment to sustainability – something being based in Canada, where forest management is particularly advanced, makes possible. Being owned by the Crown, there are very tight controls over how Canadian forests are run – and how the trees are used.

“We’ve probably got the most sustainable wood fibre in the world. The numbers are just mad. Something like 95% of all the forests in Canada are ‘forest management certified’, which is unbelievable. Look at the next best country and it’s probably nearer 30%,” says Bassett, “It’s left us with an incredible asset that keeps growing every year. The industry never takes more wood than what grows.”

Indeed, carefully managed forestry is key to environmental sustainability. Fully-grown older trees don’t absorb as much CO2, so replacing them with younger, growing trees that do, can benefit the environment. Meanwhile, the waste product of sawmilling is converted into biomass, which produces further benefits by reducing reliance on fossil fuels.

Pinnacle and Drax: A sustainable partnership

Pinnacle first started supplying Drax with compressed wood pellets in 2009, marking a turning-point for the company. “Since 2011, our production has doubled,” says Bassett.

Pinnacle now contracts a fleet of ships and has its own dedicated port facility. Each vessel can transport 60,000 tonnes. Given that Drax uses around 16,000 tonnes a day with two of its three biomass units at full capacity, one shipment keeps a third of the huge power station in North Yorkshire going for nearly four days.

“Pinnacle now produces in the region of 1.5m tonnes of pellets a year, about half of which goes to Drax. So they’re a very important part of what we do,” says Bassett.

Read the Burns Lake and Houston pellet plant catchment area analysis here, part of a series of catchment area analyses around the forest biomass pellet plants supplying Drax Power Station with renewable fuel. Others in the series can be found here

5 things you never knew about forests

Background. Fir tree branch with dew drops on a blurred background of sunlight

Forests and the products we derive from them are one of the most ubiquitous aspects of human civilisation. Despite the rapid pace of modern life, that isn’t changing.

Forest still covers 30% of the world’s land and in the UK more than an estimated 55 million m3 of wood was used in 2015 – either directly through furniture, books or hygiene paper, or indirectly, in infrastructure like fences, railways or through biomass electricity generation.

Behind all this lies the forest and the industry surrounding it. But how much do you really know about forests?

In some regions forests are increasing

Mention forestry, and there are plenty of people who make the jump to the activities of unscrupulous developers and deforestation. But while forest land is declining worldwide (in fact, we’ve lost 129 million hectares since 1990), the good news is the rate of decline is dropping sharply, down 50% across the same period.

A lot of this is thanks to growing environmental awareness, responsible forestry management and reforestation around the world. 10,000 hectares of new woodland was created in the UK in 2014 and in the USA, where a third of all land is forested, forestland has been consistently increasing over the last 25 years. There’s been an increase of roughly 7.6 million hectares between 1990 and 2015.

Vigorously growing forests absorb CO2 faster

It’s well known that trees are “the lungs of the earth”, but not all trees or ages are equally effective at absorbing the greenhouse gas CO2. A growing, younger forest is a better sink for carbon dioxide than a forest that is mature and stable. This has implications for the way these resources are used – notably when it comes to the sourcing of material for compressed wood pellets.

Whereas coal releases carbon that has been trapped underground for millions of years, wood releases carbon captured within its lifetime, making it a very low carbon fuel once manufacturing and transportation are factored in. The technique is to harvest trees when they have stopped growing at a fast rate, use the wood for forest products such as timber, pulpwood or compressed wood pellets for energy and replant the area with new, high growth potential trees. The result is a forest with a steady stream of CO2-hungry young trees and a steady stream of renewable raw material.

Forests can stop floods

 A study led by the Universities of Birmingham and Southampton and funded by the Environment Agency, found that forests in Europe play an important role in mitigating the effects of heavy rain.

Thanks to the buffering abilities of the forest canopy and the enormous water absorption capacity of woods and forests, they can slow the flow of a sudden downpour of rain overfilling nearby streams or rivers. This water will eventually be released but slowing its movement mitigates flash flooding.

Different parts of the forest have different uses

The primary commercial product from forests is not a hard one to guess: wood. But there’s more to it than that. For construction timber, the lower, thicker parts of a tree’s trunk are used. Smaller parts of the trunk are used as pulpwood which can be used to make paper, panels or for energy. Residues from the wood processing industry such as sawdust can also be used for compressed wood pellets.

With the rise of the internet, smartphones and e-readers the paper market has been shrinking. Manufacture of high-density wood pellets helps replace demand for wood once used by the paper market, as pellets can be made using low-grade wood, thinnings and residues not used in construction or furniture.

Trees talk to each other

Until recently it was thought that trees perform most of their biological functions in isolation from each other. But biologists have learned in recent years that in fact they communicate and help each other.

Under the forest floor, trees’ roots are linked by bright white and yellow fungal threads, called mycelium. In a forest, these threads act as a kind of network, linking trees to one another.

These links enable trees to share nutrients, carbon and water. Some species of tree also increase nitrogen uptake in the soil and help to improve the conditions in which other species grow. In fact, research by the University of British Columbia, indicates that certain large, older trees that rise above the forest act as ‘mother trees’ which actively help to ‘manage’ the resources for the other trees in the forest.

Based on their findings, it seems trees not only talk to each other, but help each other grow too.