Author: Alice Roberts

5 projects proving carbon capture is a reality

Petra Nova Power Station

The concept of capturing carbon dioxide (CO2) from power station, refinery and factory exhausts has long been hailed as crucial in mitigating the climate crisis and getting the UK and the rest of the world to net zero. After a number of false starts and policy hurdles, the technology is now growing with more momentum than ever. Carbon capture, use and storage (CCUS) is finally coming of age.

Increasing innovation and investment in the space is enabling the development of CCUS schemes at scale. Today, there are over 19 large-scale CCUS facilities in operation worldwide, while a further 32 in development as confidence in government policies and investment frameworks improves.

Once CO2 is captured it can be stored underground in empty oil and gas reservoirs and naturally occurring saline aquifers, in a process known as sequestration. It has also long been used in enhanced oil recovery (EOR), a process where captured CO2 is injected into oil reservoirs to increase oil production.

Drax Power Station is already trialling Europe’s first bioenergy carbon capture and storage (BECCS) project. This combination of sustainable biomass with carbon capture technology could remove and capture more than 16 million tonnes of CO2 a year and put Drax Power Station at the centre of wider decarbonisation efforts across the region as part of Zero Carbon Humber.

Here are five other projects making carbon capture a reality today:

Snøhvit & Sleipner Vest 

Who: Sleipner – Equinor Energy, Var Energi, LOTOS, KUFPEC; Snøhvit – Equinor Energy, Petoro, Total, Neptune Energy, Wintershall Dean

Where: Norway

Sleipner Vest Norway

Sleipner Vest offshore carbon capture and storage (CCS) plant, Norway [Click to view/download]

Sleipner Vest was the world’s first ever offshore carbon capture and storage (CCS) plant, and has been active since 1996. The facility separates CO2 from natural gas extracted from the Sleipner field, as well as from at the Utgard field, about 20km away. This method of carbon capture means CO2 is removed before the natural gas is combusted, allowing it to be used as an energy source with lower carbon emissions.

Snøhvit, located offshore in Norway’s northern Barents Sea, operates similarly but here natural gas is pumped to an onshore facility for carbon removal. The separated and compressed CO2 from both facilities is then stored, or sequestered, in empty reservoirs under the sea.

The two projects demonstrate the safety and reality of long-term CO2 sequestration – as of 2019, Sleipner has captured and stored over 23 million tonnes of CO2 while Snøhvit stores 700,000 tonnes of CO2 per year.

Petra Nova

Who: NRG, Mitsubishi Heavy Industries America, Inc. (MHIA) and JX Nippon, a joint venture with Hilcorp Energy 

Where: Texas, USA

In 2016, the largest carbon capture facility in the world began operation at the Petra Nova coal-fired power plant.

Using a solvent developed by Mitsubishi and Kansai Electric Power, called KS-1, the CO2 is absorbed and compressed from the exhausts of the plant after the coal has been combusted. The captured CO2 is then transported and used for EOR 80 miles away on the West Ranch oil field.

Carbon capture facility at the Petra Nova coal-fired power plant, Texas, USA

As of January 2020, over 3.5 million tonnes of CO2 had been captured, reducing the plant’s carbon emissions by 90%. Oil production, on the other hand, increased by 1,300% to 4,000 barrels a day. As well as preventing CO2 from being released into the atmosphere, CCUS has also aided the site’s sustainability by eliminating the need for hydraulic drilling.


Gorgon LNG, Barrow Island, Australia [Click to view/download]

Gorgon LNG

Who: Operated by Chevron, in a joint venture with Shell, Exxon Mobil, Osaka Gas, Tokyo Gas, Jera

Where: Barrow Island, Australia

In 2019 CCS operations began at one of Australia’s largest liquified natural gas production facilities, located off the Western coast. Here, CO2 is removed from natural gas before the gas is cooled to -162oC, turning it into a liquid.

The removed CO2 is then injected via wells into the Dupuy Formation, a saline aquifer 2km underneath Barrow Island.

Once fully operational (estimated to be in 2020), the project aims to reduce the facility’s emissions by about 40% and plans to store between 3.4 and 4 million tonnes of CO2 each year.

Quest

Shell’s Quest carbon capture facility, Alberta, Canada

Who: Operated by Shell, owned by Chevron and Canadian Natural Resources

Where: Alberta, Canada

The Scotford Upgrader facility in Canada’s oil sands uses hydrogen to upgrade bitumen (a substance similar to asphalt) to make a synthetic crude oil.

In 2015, the Quest carbon capture facility was added to Scotford Upgrader to capture the CO2 created as a result of making the site’s hydrogen. Once captured, the CO2 is pressurised and turned into a liquid, which is piped and stored 60km away in the Basal Cambrian Sandstone saline aquifer.

Over its four years of crude oil production, four million tonnes of CO2 have been captured. It is estimated that, over its 25-year life span, this CCS technology could capture and store over 27 million tonnes of CO2.

Chevron estimates that if the facility were to be built today, it would cost 20-30% less, a sign of the falling cost of the technology.

Boundary Dam

Who: SaskPower

Where: Saskatchewan, Canada

Boundary Dam, a coal-fired power station, became the world’s first post-combustion CCS facility in 2014.

The technology uses Shell’s Cansolv solvent to remove CO2 from the exhaust of one of the power station’s 115 MW units. Part of the captured CO2 is used for EOR, while any unused CO2 is stored in the Deadwood Formation, a brine and sandstone reservoir, deep underground.

As of December 2019, more than three million tonnes of CO2 had been captured at Boundary Dam. The continuous improvement and optimisations made at the facility are proving CCS technology at scale and informing CCS projects around the world, including a possible retrofit project at SaskPower‘s 305 MW Shand Power Station.

Top image: Carbon capture facility at the Petra Nova coal-fired power plant, Texas, USA

Learn more about carbon capture, usage and storage in our series:

Notice of Full Year Results announcement, presentation and webcast arrangements

Drax Group CEO Will Gardiner
RNS Number : 3963D
Drax Group PLC

Information regarding the results presentation meeting and webcast is detailed below.

Results presentation meeting and webcast arrangements

Management will host a presentation for analysts and investors at 9:00am (UK Time), Thursday 27 February 2020, at FTI Consulting, 200 Aldersgate, Aldersgate Street, London, EC1A 4HD. 

Would anyone wishing to attend please confirm by e-mailing [email protected] or calling Rosie Corbett at FTI Consulting on +44 (0) 20 3727 1718

The meeting can also be accessed remotely via a live webcast, as detailed below. After the meeting, the webcast will be made available and access details of this recording are also set out below.

A copy of the presentation will be made available from 7:00am (UK time) on Thursday 27 February 2020 for download at: https://www.drax.com/uk/investors/results-reports-agm/#investor-relations-presentations

Event Title: Drax Group plc: Full Year Results

Event Date: Thursday 27 February 2020, 9:00am (UK time)

Webcast Live Event Link: https://secure.emincote.com/client/drax/drax005

Start Date: Thursday 27 February 2020

Delete Date: Thursday 31 December 2020

Archive Link: https://secure.emincote.com/client/drax/drax005                                            

For further information please contact [email protected] on +44 (0) 20 3727 1718

Website: www.drax.com/uk

This information is provided by RNS, the news service of the London Stock Exchange. RNS is approved by the Financial Conduct Authority to act as a Primary Information Provider in the United Kingdom. Terms and conditions relating to the use and distribution of this information may apply. For further information, please contact [email protected] or visit www.rns.com.

END

Why spin a turbine without generating power?

Turbine at Cruachan Power Station

Massive spinning machinery is a big part of electricity generation whether it’s a wind turbine, hydro plant or biomass generator.

But big spinning turbines don’t just pump electricity out onto the grid. They also play a crucial role in keeping the electricity system stable, safe and efficient. This is because big, heavy spinning turbines add something else to the grid: inertia.

This is defined as an object’s resistance to change but in the context of electricity it helps the grid remain at the right frequency and voltage level. In short, they help the grid remain stable.

However, as electricity systems in Great Britain and other parts of the world move away from coal and gas to renewables, such as wind turbines, solar panels and interconnectors, the level of inertia on the system is falling.

“We need the inertia, we don’t need the megawatts,” explains Julian Leslie, Head of Networks at the National Grid Electricity System Operator (ESO). “But in today’s market we have to supply the megawatts and receive the inertia as a consequence.”

Turbine at Drax Power Station

Engineer inspecting turbine blades at Drax Power Station

The National Grid ESO is taking a new approach to this aspect of grid stability by using what are called synchronous condensers. These complicated-sounding pieces of machinery are actually quite straightforward in their concept: they provide inertia to the grid without generating unnecessary power.

These come in the form of:

  • Existing generators that remain connected to the grid but refrain from producing electricity.
  • Purpose built machines whose only function is to act as synchronous condensers, never generating real power. These may be fitted with flywheels to increase their mass and, in consequence, their inertia.

This means that spinning without generating is about to become a very important part of Great Britain’s electricity system.

Around and around

Electricity generators that spin at 3,000 rpm are described as synchronous generators because they are in sync with the grid’s frequency of 50Hz. These include coal, gas, hydro, biomass turbines and nuclear units. Most spin at 3000 rpm, some machines much less (e.g. 750 rpm). Thanks to the way they are designed, they are all synchronised together at the same, higher speed.

Then there are wind turbines where the generated power is not synchronised to the grid system. Termed asynchronous generators, these machines do not have readily accessible stored energy (inertia) and do not contribute to the stability of the system. Interconnectors and solar panels are also asynchronous.

It’s important that Great Britain’s whole grid is kept within 1% of the 50Hz frequency, otherwise the voltage of electricity starts to fluctuate, damaging equipment, becoming less efficient, even dangerous, or resulting in blackouts.

Say a power station or a wind farm were to drop offline, as occurred in August 2019, this would cause the amount of power on the grid to suddenly fall. But it is not just the power that changes – the frequency and voltage also fluctuate dramatically which can cause equipment damage and ultimately, towns, cities or widespread areas to lose power.

Running machines that have inertia act like the suspension on a car – they dampen those fluctuations, so they are not as drastic. The big spinning machines keep spinning, buying valuable milliseconds for the grid to react, often automatically, before the damage becomes widespread.

However, as a consequence of decarbonisation, more solar panels and wind turbines are now on the system and there are fewer spinning turbines, leading to lower levels of inertia on the grid.

“There are periods when renewable generation and flow from interconnectors are so great that it displaces all conventional, rotational power plants,” says Leslie. “Today, bringing more inertia onto the grid may mean switching off renewables or interconnectors, and then replacing them with rotating plants and the megawatts associated with that.”

Creating a market for inertia and synchronous condensers offers a new way forward – providing inertia without unneeded megawatts or emissions from fossil fuels.

A new spin on grid stability

At the start of 2020, The National Grid ESO began contracting parties, including Drax’s Cruachan pumped-hydro power station, to operate synchronous condensers and provide inertia to the grid when needed.

The plans mark a departure from the previous system where inertia and voltage control from electricity generators was taken for granted.

Cruachan Power Station is already capable of running its units in synchronous condenser mode (one of its units, opened up for maintenance, is pictured at the top of this article). This involves an alternator acting as a motor, offering inertia to the grid without generating unneeded electricity. Other service providers will repurpose existing turbines, construct new machines or develop new technologies that can electronically respond to the grid’s need for stability.

Synchronous condensers, or the idea of spinning a turbine freely without generating power, are not new concepts; power stations in the second half of the 20th century could shut down certain generating units but keep them spinning online for voltage control.

In the 1960s and 70s, some substations – where the voltage of electricity is stepped up and down from the transmission system – also deployed stand-alone synchronous condensers. These were also used to provided inertia as well as voltage control but are long since decommissioned.

Synchronous condenser installation at Templestowe substation, Melbourne Victoria, Australia. By Mriya via Wikimedia.

“Synchronous condensers are a proven technology that have been used in the past,” says Leslie. “And there are many new technologies we are now exploring that can deliver a similar service.”

Cheaper, cleaner, more stable

Commercial UK wind turbines

The National Grid ESO estimates the technology will save electricity consumers up to £128 million over the next six years. Savings, which come from negating the need for the grid to call upon fossil fuels for inertia as coal, oil and gas, become increasingly uneconomical across the globe as carbon taxes grow.

The fact that synchronous condensers do not produce electricity also saves money the grid may have had to pay out to renewable generators to stop them producing electricity or to storage systems to absorb excess power.

“It means the market can deliver the renewable flow without the grid having to pay to restrain it or to pay for gas to stabilise the system,” says Leslie. “Not only does this allow more renewable generation, but it also reduces the cost to the consumer.”

In a future energy system, where there is an abundance of renewable electricity generations, synchronous condensers will be crucial in keeping the grid stable. The National Grid ESO’s investment in the technology further highlights the importance of new ideas and innovation to balance the grid through this energy transition.

Synchronous generation provides benefits to system stability beyond the provision of inertia. In a subsequent article we’ll also explore how synchronous condensers can assist with voltage stability and help regional electricity networks and customers to remain connected to the national system during and after faults.

Read about the past, present and future of the country’s electricity system in Could Great Britain go off grid? 

How biomass wood pellet mills can help landowners grow healthy forests

Working Forests US South

International Paper’s pulp and paper mill, located in the Morehouse parish of Louisiana, had been in operation since 1927 and was once the largest employer in the area. However, as a result of the global recession of 2008, the company was forced to lay off over 550 employees and shut the facility. Other mills in the area have also reduced production including Georgia Pacific which let go around 530 people at its Crossett, Arkansas plant 18 miles to the north of Morehouse in 2019.

For an area dominated by forests, such as Northern Louisiana and Southern Arkansas, this decline in traditional markets came as a serious blow. It’s a region where a healthy market for wood products is vital for the local economy and, in turn, the health of the region’s forests. Luckily other wood product manufacturers and industries have since began to fill the gap.

Engineers in front of wood pellet storage silos at Drax's Morehouse BioEnergy biomass manufacturing facility in northern Louisiana

Engineers in front of wood pellet storage silos at Drax’s Morehouse BioEnergy biomass manufacturing facility in northern Louisiana

Drax Biomass has opened a mill in Morehouse parish that uses some of the the low-grade wood previously used to supply the paper industry to produce compressed wood pellets, which are used to generate renewable electricity in the UK.

Commissioned in 2015, the plant employs 74 people and can produce as much as 525,000 metric tonnes of biomass pellets a year. This makes it an important facility for local employment and the wood market in the region. However, to ensure it is positively contributing to the area and its environment, the demand for wood must be sustainably managed.

Morehouse BioEnergy sources low-grade wood from a catchment area that covers a 60-mile radius and includes 18 counties in Arkansas and four in Louisiana.

As Drax Biomass doesn’t own any of the forests it sources wood products from, it regularly examines the environmental impact of its pellet mills on the forests and markets in which it operates. The aim is to ensure the biomass used by Drax to generate 12% of Great Britain’s renewable electricity is sustainably sourced and does not contribute to deforestation or other negative climate and environment impacts.

A new report by forestry research and consulting firm Forisk evaluates the impact of biomass pellet demand from Morehouse BioEnergy on the forests and wood markets within the mill’s catchment area.

Map of pulpwood-using mills near Morehouse timber market

Map of pulpwood-using mills near Morehouse timber market

It found that biomass demand in the region does not contribute to deforestation, nor increase forest harvesting above a sustainable level. Overall, growth of the region’s pine timberland, which supplies Morehouse BioEnergy, continues to exceed removals, pointing to expanding forest carbon and wood inventory.

Annual growth compared to harvesting removals

Annual growth compared to harvesting removals

Growing forests and increasing timber stocks

The study focuses on timberland – working forests – in the plant’s sourcing area, which the US Forestry Service categorises as productive land capable of providing timber on an industrial scale.

The timberland here is made up of 63% softwood trees, which includes pines, and 37% hardwoods such as oak. Pellet manufacturing as a whole (including other pellet producers in the area), accounts for only 6% of the demand for wood products in the region. Of that, Morehouse BioEnergy contributes to 4% of total pellet demand.

Total area of timberland

Total area of timberland

Lumber – such as sawtimber – makes up the bulk of demand for wood products, accounting for 46% of total demand, largely as a result of its high market value and landowners’ aims to extract maximum revenue from their pine stands.

However, the less valuable wood – parts of trees that are misshapen, too short or thin to be used for lumber – can be sold at a lower price to biomass pellet mills. This wood might previously have been sold to paper and pulp mills exclusively, but with International Paper’s departure, Morehouse BioEnergy now fills a part of that role.

Total volume of growing stock on timberland

Total volume of growing stock on timberland

Maintaining healthy markets for both high and low-value wood is key to enabling landowners to reforest areas once they have been harvested in the knowledge it will provide a valuable return in the future. Ultimately, however, the way forests are maintained depends on the individual landowners and how they want to use their land.

The advantages of corporate ownership

Morehouse BioEnergy’s catchment area covers 28,000 square kilometres of timberland, within which 96% of the timber is privately owned. While some of that is owned by families with small patches of productive land, 54% is held by corporate owners. This includes businesses such as real estate investment trusts (REITs) and timber investment management organisations (TIMOs), which advise institutional investors on how to manage their forest assets.

This high percentage of corporate ownership influences forest management and replanting, as owners look to maximise the value of forests and seek to continue to generate returns from their land.

“In general, corporate owners are spending more money on silviculture and actively managing their timber stands,” explains Forisk Consulting Partner Amanda Lang. “They are investing more in fertiliser, their seedlings and harvest control on pine stands, because that leads to larger trees of a higher quality and more profit in the long run.” This is reflected in the higher growth rates found in the private sector, leading to faster rates of carbon sequestration.

Annual growth per hectare by owner type

Annual growth per hectare by owner type

Smaller private landowners, meanwhile, may have other objectives for their land like recreation and hunting, in addition to timber income. As a result, some owners may be less inclined to intensively manage their timber stands, forgoing fertilisation and competition control (due to cost) and might harvest on a less regular basis. Although these landowners may not be maximising the productivity of their timber resource to the same degree corporate owners do, their unique management often contribute to greater diversity on the landscape.

Demand and forest health

In 2018 the annual average price for a metric tonne of pine sawtimber in Morehouse BioEnergy’s catchment area was $25.71, down from a 10-year high of $31.60 in 2010. Similarly, pine pulpwood, from which biomass pellets are made, was valued at $7.75 per metric tonne in 2018, down from a 10-year high of $13 in 2010.

These low wood prices have caused many landowners to delay harvesting forests in hopes for a more lucrative wood price. As a result, pine timber inventories have grown across Morehouse BioEnergy’s catchment area. In 2010 the US Forest Service counted more than 167 million metric tonnes of pine inventory. By 2018 this had increased by more than 35% to reach 226 million.

Morehouse BioEnergy market historic stumpage prices, $/metric tonne

Morehouse BioEnergy market historic stumpage prices, $/metric tonne

The report suggests this price slump is an ongoing result of the 2008 recession, which greatly affected US house construction – one of the primary uses of sawtimber and many other types of wood products in the US. Some areas have already seen sawtimber prices increase as they recover from the recession, however, the report suggests this is not spread evenly on a national level.

The inventory overhang in Morehouse BioEnergy’s catchment area is expected to begin reversing in 2024 or 2025, as Lang explains: “We expect inventories to increase for a few more years and then start to decline. That said, inventories will remain higher than pre-recession levels.”

While high inventories suggest an abundant resource, lower inventory volumes are not indicative of declining or unhealthy forests. Rather, they can point to younger, growing forests that have recently been replanted, which will later grow to higher inventory volumes as they mature. Both suggest a healthy forestry industry in which landowners continue to reinvest in forests.

Overall, the analysis of the region points to healthy, growing forests and, importantly, a sustainable industry from which Drax can responsibly source biomass pellets. Ensuring the biomass used at Drax Power Station is sustainably sourced is crucial to its generation of renewable, carbon-neutral electricity, and in turn laying the path to negative emissions.

Read the full report: Morehouse, Louisiana Catchment Area Analysis. A short summary of its analysis and conclusions, written by our forestry team, can be read here. Explore every delivery of wood to Morehouse BioEnergy using our ForestScope data transparency tool.

Morehouse catchment area analysis

Working forest in southern Arkansas within the Morehouse catchment area

The forest area around the Drax Morehouse BioEnergy plant has a long history of active management for timber production. 96% of the forest owners are private and around half of these are corporate investors seeking a financial return from forest management. The pulp and paper (p&p) sector dominates the market for low grade roundwood with over 75% of the total demand. The wood pellet markets use only 6% of the roundwood, of which 4% is used by Morehouse.

Given the small scale of demand in the pellet sector, the extent of influence is limited. However, the new pellet markets have had a positive impact, replacing some of the declining demand in the p&p sector and providing a market for thinnings for some forest owners and a new off-take for sawmill residues.

Pine forest is dominant in this area with an increasing inventory (growing stock) despite a stable forest area. Active management of pine forests has increased the amount of timber stored in the standing trees by 68 million tonnes from 2006 to 2018.  Over the same period the hardwood inventory remained static.

Chart showing historic inventory and timberland area in Morehouse catchment

Historic inventory and timberland area in Morehouse catchment; click to view/download.

US Forest Service FIA data shows that the pine resource in this catchment area has been maturing, the volume of timber has been increasing in each size class year on year. This means that the volume available for harvesting is increasing and that more markets will be required to utilise this surplus volume and ensure that the long-term future of the forest area can be maintained.

Chart showing historic pine inventory by DBH Class

Historic pine inventory by DBH Class in Morehouse catchment; click to view/download.

This is reflected in the growth drain ratio – the comparison of annual growth versus harvesting. A ratio of one shows a forest area in balance, less than one shows that harvesting is greater than growth. This can be the case when the forest area is predominantly mature and at the age when clear cutting is necessary.

A growth drain ratio of more than one shows that growth exceeds harvesting, this is typically the case in younger forests that are not yet ready for harvesting and are in the peak growing phase, but it can also occur when insufficient market demand exists and owners are forced to retain stands for longer in the absence of a viable market.

Drax Morehouse plant

Drax’s Morehouse BioEnergy compressed wood pellet plant in northern Louisiana

This can have a negative impact on the future growth of the forest; limiting the financial return to forest owners and reducing the cumulative sequestration of carbon by enforcing sub-optimal rotation lengths.

The current growth drain ratio of pine around Morehouse is 1.67 with an average annual surplus of around 7 million metric tonnes. This surplus of growth is partly due to a decline in saw-timber demand due to the global financial crisis but also due to the maturing age class of the forest resource and the increasing quantity of timber available for harvesting.

Historic growth and removals of pine in Morehouse catchment (million metric tonnes)

YearGrowthRemovalsNet GrowthGrowth-to-Drain
200914.112960762411.1860124622.92694830041.26166145535
201014.580331100610.91819493463.662136166021.33541589869
201115.129903273610.72162297824.408280295451.41115792865
201215.357258404710.30755904395.049699360811.48990254039
201315.63898206189.701617808065.93736425371.61199733603
201415.91041518229.376564771556.533850410651.69682773701
201515.94235364499.669133266476.273220378431.64878828387
201616.43527840789.579357241816.855921165961.71569740985
201716.838075354610.1594737396.678601615681.65737672908
201817.770968348910.65938820047.111580148561.66716588371

The chart below shows the decline in pine saw-timber demand in the catchment area following the financial crisis in 2008. It also shows the recent increase in pulpwood demand driven by the new pellet mill markets that have supplemented the declining p&p mills.

Sawmills are a vital component of the forest industry around Morehouse, with most private owners seeking to maximise revenue through saw-timber production from pine forests.

As detailed in the table below, there are 70 markets for higher value timber products around this catchment area. These mills also need an off-taker for their residues and the pellet mills can provide a valuable market for this material, increasing the viability of the saw-timber market.

Operating grade-using facilities near Morehouse timber market

TypeNumber of MillsCapacityCapacity UnitsHardwood Roundwood At Mill From Market Softwood Roundwood At Mill From Market 
Consumption, million green metric tonnes
Lumber6810538.8235294M m³1.737194320550.88604623042613.06745552335.69986977638
Plywood/Veneer2904M m³000.9617438725360.506109617373
Total701.737194320550.88604623042614.02919939586.20597939376

Pulp and paper mills dominate the low grade roundwood market for both hardwood and softwood. The pellet mill market is small with just 3 mills and therefore does not influence forest management decisions or macro trends in the catchment area. However, demand for wood pellet feedstock exceeds 1.5 million tonnes p.a. and this can provide a valuable market for thinnings and sawmill residues. A healthy forest landscape requires a combination of diverse markets co-existing to utilise the full range of forest products.

Operating pulpwood-using facilities near Morehouse timber market

TypeNumber of MillsCapacityCapacity UnitsHardwood Roundwood At Mill From Market Softwood Roundwood At Mill From Market 
Consumption, million green metric tons
Pulp/Paper117634.86896M metric tons3.489826926741.192570970097.557287050371.66598821268
OSB/Panel62412.55M m³002.567325398621.19890681942
Chips178395.08999M metric tons2.938909722111.46484421365.287607151192.18745126814
Pellets31573.965975M metric tons002.078219858451.01128896402
Total346.428736648862.6574151836917.49043945866.06363526426

In its analysis, Forisk Consulting considered the impact that the new pellet mills including Morehouse BioEnergy have had on the significant trends in the local forest industry. The tables below summarise the Forisk view on the key issues. In its opinion, the Morehouse plant has had no negative impact.

Bioenergy impacts on markets and forest supplies in the Morehouse market

ActivityIs there evidence that bioenergy demand has caused the following?Explanation
DeforestationNo
Change in forest management practiceNo
Diversion from other marketsPossiblyBioenergy plants compete with pulp/paper and OSB mills for pulpwood and residual feedstocks. There is no evidence that these facilities reduced production as a result of bioenergy markets, however.
Increase in wood priceNoThere is no evidence that bioenergy demand increased stumpage prices in the market.
Reduction in growing stocking timberNo
Reduction in sequestration of carbon / growth rateNo
Increasing harvesting above the sustainable yieldNo

Bioenergy impacts on forests markets in the Morehouse market

Forest metric Bioenergy impact
Growing Stock Neutral
Growth Rates Neutral
Forest Area Neutral
Wood Prices Neutral
Markets for Solid Wood Neutral to Positive*
*Access to viable residual markets benefits users of solid wood (i.e. lumber producers).

Read the full report: Morehouse, Louisiana Catchment Area Analysis. An interview with the co-author, Amanda Hamsley Lang, COO and partner at Forisk Consulting, can be read here. Explore every delivery of wood to Morehouse BioEnergy using our ForestScope data transparency tool.

This is part of a series of catchment area analyses around the forest biomass pellet plants supplying Drax Power Station with renewable fuel. Others in the series include: ,

Others in the series include: Georgia MillEstonia, Latvia, Chesapeake and Drax’s own, other three mills LaSalle BionergyMorehouse Bioenergy and Amite Bioenergy.

6 disused power stations renovated and reimagined

E-WERK entrance

The Tate Modern and Battersea Power Station along the banks of the Thames are architectural icons of the London skyline. But before they were landmarks, they were oil- and coal-burning power stations, right in the heart of the city they powered.

As the city developed, the technology used to generate power advanced, and the need for cleaner fuel sources grew, the requirement for large, city-based fossil fuel power stations like these fell. The closure of Battersea and the Bankside power stations became inevitable.

Rather than knocking them down, however, it was clear their scale, heritage and location could be repurposed to meet an entirely new set of needs for the city. Now, as an art gallery and modern, mixed-use neighbourhood space, they remain in service to the city while retaining part of their heritage.

Eindhoven’s Innovation Powerhouse, Netherlands

Eindhoven’s Innovation Powerhouse, Netherlands. Photo: Tycho Merijn.

The reimagining of disused power stations is not just a London phenomenon. It is one seen around the world, where industrial buildings like these are being transformed for a range of purposes.

Eindhoven’s Innovation Powerhouse

Eindhoven’s Innovation Powerhouse in the Netherlands remains distinguishable as a power station due to its enormous coal chimneys, but today it serves a different purpose. The original skeleton of the building has been repurposed as a creative office space for innovative tech companies. The open plan structure encourages collaboration and creativity and its location right in the city centre makes it easily accessible to employees. In a nod to its previous use, however, a biogas plant remains situated next door, burning wood waste to produce renewable electricity and heat for the building.

Beloit’s cultural ‘Powerhouse’

Like Innovation Powerhouse, the exterior of Blackhawk Generating Station in Beloit, Wisconsin remains clearly identifiable as a power station. A century ago the once gas-fired plant supplied peak-time electricity to surrounding cities, but since being bought by Beloit University, it’s being transformed into ‘The Powerhouse’– a leisure and cultural centre for both students and the general public. Designs include an auditorium, a health and wellness hub, a swimming pool, lecture halls and more. It sits along the Rock River, between the university and the city – a prime location for bringing communities together, and is due to open in January 2020.

CGI of The Powerhouse, Beloit College Wisconsin. Image: Studio Gang Architects

An artist’s impression of The Powerhouse, Beloit College Wisconsin. Photo: Studio Gang Architects.

The Tejo Power Station Electricity Museum, Lisbon, Portugal.

Lisbon’s electricity museum

The Tejo Power Station once supplied electricity to the whole of Lisbon. Today it’s a museum and art gallery, but remains a testament to Portugal’s technological, historical and industrial heritage. It pays homage to the evolution of electricity through a permanent collection that includes original machinery from its construction in 1908, and charts its evolution from baseload electricity generator to standby power station used only to complement the country’s prominent supply of hydro plants. It’s a space that celebrates the heritage of the building, an attitude reflected throughout Portugal – there is even an energy museums roadmap created for people to tour a trail of decommissioned power stations.

Rome’s renaissance power station

Centrale Montemartini Thermoelectric plant was Rome’s first public power station, operating between 1912-1963. Decommissioned in the 1960s, it was adapted to temporarily house an exhibition of renaissance sculptures and archaeological finds from Rome’s Capitoline Museums that were at the time undergoing renovation. The clash of the classical artworks and the power station’s original equipment was such a success that it has been open ever since.

Centrale Montemartini, Rome, Italy.

Berlin’s E-WERK Luckenwalde

Why replace a power station with an art gallery if it could in fact be both? Berlin’s E-WERK Luckenwalde is a hybrid – what was once a coal power plant before the collapse of communism in 1989, is now both a renewable power plant and an art gallery. It uses waste woodchips from neighbouring companies to generate and sell power to the grid to fund the cost of a contemporary art centre housed inside it. It still generates electricity, only this time it’s renewable and powers the art gallery, which in turn energises the artistic community of Berlin.

 

Copenhagen’s futuristic Amager Bakke Waste-to-Energy-Plant

 Copenhagen’s Amager Bakke Waste-to-Energy-Plant is one of the cleanest incineration plants in the world. Opened in 2017 to replace a nearby 45-year-old incineration plant, it burns municipal waste to create heat and power for the surrounding area. What really sets it apart, however, is its artificial ski slope cascading down one side of the building, which has been open to the public all year-round since October 2019. This purposefully bold design sets out to change people’s perceptions of what power stations can do.

CopenHill ski slope, Amager Bakke, Copenhagen, Denmark. Photos: Max Mestour.

CopenHill ski slope, Amager Bakke, Copenhagen, Denmark. Photos: Max Mestour.

The decommissioning of power stations has resulted in cities’ acquiring buildings in prime central locations for the public to enjoy. These examples demonstrate the world’s transition to renewable power, the advances of technology, and populations’ increasing awareness of the environmental impact of their energy usage.

Top image: Entrance of E-WERK Luckenwalde, 2019. Photo: Ben Westoby. Click here to view/download

What is net zero?

Skyscraper vertical forest in Milan

For age-old rivals Glasgow and Edinburgh, the race to the top has taken a sharp turn downwards. Instead, they’re in a race to the bottom to earn the title of the first ‘net zero’ carbon city in the UK.

While they might be battling to be the first in the UK to reach net zero, they are far from the only cities with net zero in their sights. In the wake of the growing climate emergency, cities, companies and countries around the world have all announced their own ambitions for hitting ‘net zero’.

It has become a global focus based on necessity – for the world to hit the Paris Agreement targets and limit global temperature rise to under two degrees Celsius, it’s predicted the world must become net zero by 2070.

Yet despite its ubiquity, net zero is a term that’s not always fully understood. So, what does net zero actually mean?

Glasgow, Scotland. Host of COP26.

What does net zero mean?

‘Going net zero’ most often refers specifically to reaching net zero carbon emissions. But this doesn’t just mean cutting all emissions down to zero.

Instead, net zero describes a state where the greenhouse gas (GHG) emitted [*] and removed by a company, geographic area or facility is in balance.

In practice, this means that as well as making efforts to reduce its emissions, an entity must capture, absorb or offset an equal amount of carbon from the atmosphere to the amount it releases. The result is that the carbon it emits is the same as the amount it removes, so it does not increase carbon levels in the atmosphere. Its carbon contributions are effectively zero – or more specifically, net zero.

The Grantham Research Institute on Climate Change and the Environment likens the net zero target to running a bath – an ideal level of water can be achieved by either turning down the taps (the mechanism adding emissions) or draining some of the water from the bathtub (the thing removing of emissions from the atmosphere). If these two things are equally matched, the water level in the bath doesn’t change.

To reach net zero and drive a sustained effort to combat climate change, a similar overall balance between emissions produced and emissions removed from the atmosphere must be achieved.

But while the analogy of a bath might make it sound simple, actually reaching net zero at the scale necessary will take significant work across industries, countries and governments.

How to achieve net zero

The UK’s Committee on Climate Change (CCC) recommends that to reach net zero all industries must be widely decarbonised, heavy good vehicles must switch to low-carbon fuel sources, and a fifth of agricultural land must change to alternative uses that bolster emission reductions, such as biomass production.

However, given the nature of many of these industries (and others considered ‘hard-to-treat’, such as aviation and manufacturing), completely eliminating emissions is often difficult or even impossible. Instead, residual emissions must be counterbalanced by natural or engineered solutions.

Natural solutions can include afforestation (planting new forests) and reforestation (replanting trees in areas that were previous forestland), which use trees’ natural ability to absorb carbon from the atmosphere to offset emissions.

On the other hand, engineering solutions such as carbon capture usage and storage (CCUS) can capture and permanently store carbon from industry before it’s released into the atmosphere. It is estimated this technology can capture in excess of 90% of the carbon released by fossil fuels during power generation or industrial processes such as cement production.

Negative emissions essential to achieving net zero

Click to view/download graphic. Source: Zero Carbon Humber.

Bioenergy with carbon capture and storage (BECCS) could actually take this a step further and lead to a net removal of carbon emissions from the atmosphere, often referred to as negative emissions. BECCS combines the use of biomass as a fuel source with CCUS. When that biomass comes from trees grown in responsibly managed working forests that absorb carbon, it becomes a low carbon fuel. When this process is combined with CCUS and the carbon emissions are captured at point of the biomass’ use, the overall process removes more carbon than is released, creating ‘negative emissions’.

According to the Global CCS Institute, BECCS is quickly emerging as the best solution to decarbonise emission-heavy industries. A joint report by The Royal Academy of Engineering and Royal Society estimates that BECCS could help the UK to capture 50 million tonnes of carbon per year by 2050 – eliminating almost half of the emissions projected to remain in the economy.

The UK’s move to net zero

In June 2019, the UK became the first major global economy to pass a law to reduce all greenhouse gas emissions to net zero by 2050. It is one of a small group of countries, including France and Sweden, that have enacted this ambition into law, forcing the government to take action towards meeting net zero.

Electrical radiator

Although this is an ambitious target, the UK is making steady progress towards it. In 2018 the UK’s emissions were 44% below 1990 levels, while some of the most intensive industries are fast decarbonising – June 2019 saw the carbon content of electricity hit an all-time low, falling below 100 g/kWh for the first time. This is especially important as the shift to net zero will create a much greater demand for electricity as fossil fuel use in transport and home heating must be switched with power from the grid.

Hitting net zero will take more than just this consistent reduction in emissions, however. An increase in capture and removal technologies will also be required. On the whole, the CCC predict an estimated 75 to 175 million tonnes of carbon and equivalent emissions will need to be removed by CCUS solutions annually in 2050 to fully meet the UK’s net zero target.

This will need substantial financial backing. The CCC forecasts that, at present, a net zero target can be reached at an annual resource cost of up to 1-2% of GDP between now and 2050. However, there is still much debate about the role the global carbon markets need to play to facilitate a more cost-effective and efficient way for countries to work together through market mechanisms.

Industries across the UK are starting to take affirmative action to work towards the net zero target. In the energy sector, projects such as Drax Power Station’s carbon capture pilots are turning BECCS increasingly into a reality ready to be deployed at scale.

Along with these individual projects, reaching net zero also requires greater cooperation across the industrial sectors. The Zero Carbon Humber partnership between energy companies, industrial emitters and local organisations, for example, aims to deliver the UK’s first zero carbon industrial cluster in the Humber region by the mid-2020s.

Nonetheless, efforts from all sectors must be made to ensure that the UK stays on course to meet all its immediate and long-term emissions targets. And regardless of whether or not Edinburgh or Glasgow realise their net zero goals first, the competition demonstrates how important the idea of net zero has become and society’s drive for real change across the UK.

Drax has announced an ambition to become carbon negative by 2030 – removing more carbon from the atmosphere than produced in our operations, creating a negative carbon footprint. Track our progress at Towards Carbon Negative.

[*] In this article we’ve simplified our explanation of net zero. Carbon dioxide (CO2) is the most abundant greenhouse gas (GHG). It is also a long-lived GHG that creates warming that persists in the long term. Although the land and ocean absorb it, a significant proportion stays in the atmosphere for centuries or even millennia causing climate change. It is, therefore, the most important GHG to abate. Other long-lived GHGs include include nitrous oxide (N2O, lifetime of circa 120 years) and some F-Gasses (e.g. SF6 with a lifetime of circa 3,200 years). GHGs are often aggregated as carbon dioxide equivalent (abbreviated as CO2e or CO2eq) and it is this that net zero targets measure. In this article, ‘carbon’ is used for simplicity and as a proxy for ‘carbon dioxide’, ‘CO2‘, ‘GHGs’ or ‘CO2e’.

Winter on the Hollow Mountain

Winter snow scene around the Hydro electric Dam on Ben Cruachan,above Loch Awe, Argyll, Scotland

Scotland’s landscape is defined by its weather. The millennia of wind, rain and snow has battered the country, ebbing away at its rivers, mountains, valleys and deep lochs forged by ice ages and volcanos. Weather also plays an important role in the country’s power generation. The country has more than 9 gigawatts (GW) of installed wind power – enough to sometimes meet double Scotland’s electricity demand – as well as having a long history of hydropower.

But while it is an intrinsic part of the country, Scotland’s weather can be anything but pleasant. Rain can be persistent and when the temperature drops in winter, it turns to snow – a lot of it. Scotland gets more snow than any other part of the UK.

Scottish poet Robert Burns described the harshness of the winter months in his 1781 poem Winter A Dirge:

“The wintry west extends his blast,

And hail and rain does blaw;

Or the stormy north sends driving forth

The blinding sleet and snaw:”

Sleet and ‘snaw’ (snow) fall occurs on average for 38 days a year in Scotland, compared to an average of 23 days across the rest of the United Kingdom, and can remain covering mountaintops long into spring.

Ben Cruachan Mountain

Ben Cruachan

The peak of Ben Cruachan in the Western Highlands is no exception. Cruachan Power Station, on the slopes of the mountain, however, must be ready to either generate or absorb electricity through all forms of weather – even the most severe.

“On a few occasions the snowfall has been so extreme that we’ve been unable to access the dam for a few weeks at a time,” says Gordon Pirie, a Civil Engineer at Cruachan. “Thankfully, we have enough controls in place where we are still able to monitor and operate things remotely.”

Mountain road from Cruachan Power Station to its dam blocked due to snow

Mountain road from Cruachan Power Station to its dam blocked due to snow

This mountainside location and winter weather can make for tough working conditions, but Cruachan is designed to handle it. In fact, in some cases it benefits from it.

Taking advantage of wet weather

Cruachan is built around the geography and climate of the Highlands. It stores water in an upper reservoir 400 meters (1,312 feet) up Ben Cruachan and uses its elevation to run it down the mountain, spin a turbine and generate power.

And when there is excess electricity being generated nationally, the same turbines reverse and use the excess electricity to pump water from Loch Awe up to the reservoir, helping to balance the grid. This acts as a form of energy storage by essentially stockpiling the excess electricity in the form of water held in the top reservoir.

For the most part the water used to generate electricity comes exclusively from Loch Awe and is passed up and down the mountain. However, 10% of it comes for ‘free’, as it’s collected from natural rainfall and surface water that makes its way to the upper reservoir through Cruachan’s aqueducts. This system of 14 kilometres of interconnected concrete pipes covers a 23 square kilometre radius around the reservoir and is designed to bring in water from 75 intakes dotted around the top of the mountain.

A North of Scotland Hydro-Electric Board diagram from c.1960s showing the aqueducts feeding Cruachan’s dam; click to view/download.

A North of Scotland Hydro-Electric Board diagram from c.1960s showing the aqueducts feeding Cruachan’s dam; click to view/download.

Some of these intakes are as small as street drains, while others are large enough to drive a Land Rover into. It’s part of Pirie’s job to keep them in good working order so they continue to deliver water to the reservoir. As the intakes are scattered around the mountaintop, they must be able to deal with whatever the Scottish winter throws at them.

Gordon Pirie, Civil Engineer and Cruachan Power Station dam

Gordon Pirie, Civil Engineer and Cruachan Power Station dam

“Even in freezing conditions the water will still flow through the aqueduct system, the intakes have a built-in feature which allows the water to flow into them even if the surface is frozen solid,” explains Pirie. “Any snow or frost on the ground eventually thaws and makes its way to the reservoir.”

As spring arrives and snow begins to thaw across the Highlands, greater volumes of water will run off into the reservoir and the power station’s engineers work to manage the water level.

Keeping water pressure under control

Cruachan Dam

Thawing snow can bring greater volumes of water into the reservoir.

The power station must be able to pump water and absorb excess electricity from the grid at a moment’s notice. This ability to turn excess electricity into stored energy makes Cruachan hugely useful in controlling the grid’s voltage, frequency and in keeping it stable. However, there must be enough space available in the reservoir for the water being pumped up the mountainside to enter – even when excessive rainfall or melting snow begins to naturally fill it up.

The power station can control the reservoir levels through a number of means. This includes the ability to close off an aqueduct, or to run the turbines without generating electricity so the team can move water from the reservoir into Loch Awe below.

If the water level and pressure on the dam reaches dangerous levels a ‘dispenser valve’ can be opened in an emergency, sending a jet of water flying out the dam to cascade safely down the mountainside. However, outside of testing, this has never been necessary to do. 

And while the weather might be the most persistent natural force the power station must deal with, it’s not the only one. “Recently we had an issue with a bat roosting within one of the tunnels in which we were carrying out stabilisation works,” recalls Pirie. “It was looking for a suitable location to hibernate for the winter and the tunnel provided the ideal environment. We had to stop works to have a bat survey undertaken and apply for a bat license.”

Cruachan’s location makes for stunning views of the Highlands, but occasionally brutally cold and perilously wet conditions come with the territory. For the power station team, working with the sometimes-despairing weather is all part of what allows the Hollow Mountain to operate as it has done for more than half a century.

The Highlands around Ben Cruachan are rich with wildlife. Educational information on area’s flora and fauna can be explored at the Cruachan Power Station visitor centre.

The Highlands around Ben Cruachan are rich with wildlife. Educational information on area’s flora and fauna can be explored at the Cruachan Power Station visitor centre.

Visit Cruachan — The Hollow Mountain to take the power station tour.

Findings and Recommendations from the First Meeting of Drax’s Independent Advisory Board on Sustainable Biomass (IAB)

Sir John Beddington

Dear Will,

Findings and Recommendations from the First Meeting of Drax’s Independent Advisory Board on Sustainable Biomass (IAB)

The Independent Advisory Board on Sustainable Biomass provides this statement following its first meeting on Friday 15th November 2019.

Attendees: John Beddington (Chair), John Krebs (Deputy Chair), Virginia Dale, Sam Fankhauser, Elena Schmidt, Robert Matthews (Ex-Officio Member).

During the meeting, IAB members:

The IAB shares this summary of its findings and recommendations.

  • The IAB agreed that its role is to provide independent advice to Drax on its sustainable biomass policy and practice. IAB members will do this by scrutinising the science and evidence, informing Drax’s approach, and by providing independent feedback to Drax on how it can adopt best practices. In addition to holding two face to face meetings each year, the IAB agreed to hold two interim telephone meetings.
  • The IAB recommended Drax refer to “forest environment” not “natural environment” in its policy.
  • The IAB noted that the ten criteria Drax have outlined to reduce the carbon emissions of its biomass approach have been designed to reflect the findings of Forest Research’s Carbon Impacts of Biomass Consumed in the EU report (2018). The IAB found that the Drax criteria are an accurate interpretation of the report.
  • The IAB would like to explore how the science can further be developed with regard to the use of small, early thinnings and small roundwood, and consider how Drax’s policy might evolve.
  • The IAB and Drax discussed the possibility of developing some sub criteria for specific forest types.
  • The IAB suggested Drax could consider a “Restatement of the Evidence” academic review process to better understand, and draw alignment on, where there is scientific evidence on the sustainability of biomass.
  • The IAB suggested Drax should consider both a goal to continuously improve and consider the longer term implications of its policy commitments in light of potential climate changes.
  • The IAB emphasised that the way Drax operationalises its commitments will be critical. It stressed the importance of robustly exploring the counterfactuals to Drax’s biomass activities, highlighting the potential for trade-offs between climate and biodiversity outcomes as an area for more detailed review.
  • The IAB highlighted a number of considerations for Drax in its use of the Sustainable Biomass Program (SBP). It welcomed SBP’s adoption of a multi-stakeholder approach and suggested it will be important to scrutinise its evolution. It noted that, as Drax’s sustainability commitments go beyond SBP’s current criteria, Drax needs a strategy on how to evidence the compliance for these additional commitments.
  • The IAB expressed interest in learning about Drax’s long term vision. It noted that the ceasing of subsidies in 2027 will be a key milestone and highlighted its interest in exploring Drax’s strategy for managing this.

In future meetings with Drax, the IAB will further examine evidence of Drax’s approach, performance and impact against its commitments, to identify any changes that Drax may need to make. The IAB noted the following specific topics for further consideration:

  • Evidence relating to the impact of thinning a forest on carbon, pest control and fire risks;
  • How Drax operationalises its commitments, the counterfactuals of Drax’s biomass activities, and potential trade-offs between biodiversity and carbon outcomes;
  • Drax’s approach to biodiversity;
  • Drax’s long term vision including its plans for developing and scaling bioenergy with carbon capture and storage (BECCS) and its broader roadmap to net zero carbon emissions;
  • Drax’s evidencing for each of its climate related commitments;
  • Potential differences between the standards expected by stakeholders and local legal standards;
  • Water and soil management practices.

Yours sincerely,

Professor Sir John Beddington
Chair of the IAB

View/download the PDF version here