Author: Alice Roberts

Storage solutions: 3 ways energy storage can get the grid to net zero

Key points:

  • Energy storage plays a crucial role in the UK electricity system by not only providing reserve power for when demand is high but also absorbing excess power when demand is low.
  • The UK’s electricity system’s growing dependency on intermittent renewables means the amount of energy storage needed will increase to as much as 30 GW by 2050.
  • There are three different durations of energy storage needed to help balance the grid: short-term, day-to-day and long term.
  • It will take a range of technologies including batteries, pumped storage hydro and new approaches to meet the storage demands of a net zero grid.

When you turn on a lightbulb – in 10, 20, or 30 years – the same thing will happen. Electricity will light up the room. But where that electricity comes from will be different. As the country moves toward net zero emissions, low carbon and renewable power sources will become the norm. However, it’s not as simple as swapping in renewables for the fossil fuels the grid was built around.

Weather dependant sources, like wind and solar, are intermittent – meaning other sources are needed at times when there’s little wind or no sunshine to meet the country’s electricity demand. Equally as challenging to manage, however, is what to do when there’s an excess of power being generated at times of low demand.

Energy storage offers a low carbon means of delivering power at times of low supply, as well as absorbing any excess of generated power when demand is low, helping to balance and stabilise the grid. As the electricity system transforms through a range of low-carbon and renewable technologies, the amount of energy storage on the UK grid will need to expand from 3 GW of today to over 30 GW in the coming decades.

The storage solution

Even as the UK’s electricity system transforms, from fossil fuels to renewables, the way the grid operates remains primarily the same. Central to that is the principle that the supply of electricity being generated must always match the demand on a second-by-second basis.

Too little or too much power on the system can cause power outages and damage equipment. National Grid needs to be able to call on reserve power sources to meet demand when supply is low or pay to curtail renewable sources’ output when demand drops. During the summer of 2020, for example, lower demand due to Covid-19 coupled with high renewable output resulted in balancing costs 40% above expectations.

“There is a lot of offshore wind coming online in Scotland, as much as 11 GW by 2030 and a further 25 GW planned,” explains Steve Marshall, a Development Manager at Drax.

Offshore wind farm along the coast of Scotland

“It’s great because it increases the amount of renewable power on the system, but the transmission lines between Scotland and England can become saturated as much as 30-40% of the time because there is too much power.”

Electricity storage can provide a source of reserve power, as well as absorb excess electricity. These capabilities are crucial for balancing the grid and ensuring that frequency remains within a stable operating range of 50 Hertz, as well as providing other ancillary services.

Whether it’s absorbing power or delivering electricity needed to keep the grid stable, in energy storage, timing is everything.

There are three main time periods electricity storage needs to operate over:

  1. Fast-acting, short term electricity

Because electricity supply must always match demand, sudden changes mean the grid needs to respond immediately to ensure frequency and voltage remain stable, and electricity safe to use.

Batteries are considered the fastest technology for responding to a sudden spike in demand or an abrupt loss of supply.

Battery technology has evolved rapidly in recent decades as innovations like lithium-ion batteries, such as those used in electric cars, and emerging solid-state batteries become more affordable and more commonplace. This makes it more feasible to deploy large-scale installations that can absorb and store excess power from the grid.

“Batteries are good for near-instantaneous responses. It can be a matter of milliseconds for a battery to deploy power,” says Marshall. “If there’s a sudden problem with frequency or voltage, batteries can respond – it’s something that’s quite unique to them.”

The speed at which batteries can deploy and absorb electricity makes them useful grid assets. However, even very large battery setups can only discharge power for around two hours. If, for example, the wind dropped off for a long period the grid needs a longer-duration supply of stored power.

  1. Powering day-to-day changes in supply, demand, and the grid

When it comes to managing the daily variations of supply and demand the grid needs to be able to call on reserves of power for when there are unexpected changes in the weather or electricity demand from users. Pumped storage hydro power offers a low carbon way to provide huge amounts of electricity, quickly and for periods that can last as long as eight or even 24 hours.

The technology works by moving water between two reservoirs of water at different elevations. When there is demand for electricity water is released from the upper reservoir, which rushes down a series of pipes, spinning water turbines, generating electricity. However, when there is an excess of power on the electricity system the same turbines can reverse and absorb electricity to pump water from the lower to the upper reservoir, storing it there as a massive ‘water battery’.

Pumped storage hydro is a long-established technology, having been developed since the 1890s in Italy and Switzerland. In the UK today there are four pumped storage hydro power stations in Scotland and Wales, with a total capacity of 2.8 GW.

Among those is the Drax-owned Cruachan Power Station in the Scottish Highlands. The plant is made up of four generating/pumping turbines located inside Ben Cruachan between Loch Awe and an upper reservoir holding 10 million cubic metres of water.

Turbine Hall at Cruachan Power Station

Pumped hydro storage facilities can rapidly begin generating large volumes of power in as little as 30 seconds or less. The ability to switch their turbines between different modes – pump, generate, and spin mode to provide inertia to the gird without producing power – make pumped storage hydro plants versatile assets for the gird.

“How Cruachan operates depends on weather,” says Marshall. “We make as many 1000 mode changes a month, that’s how frequently Cruachan is called on by National Grid.”

As the electricity system transforms there will be a greater need for flexible energy storage like pumped storage hydro, this is why Drax is kickstarting plans to expand Cruachan Power Station, however, the specific conditions needed for such facilities can make new projects difficult and expensive.

Cruachan 2, to the east of the original power station, will add up to 600 MW in generating capacity, more than doubling the site’s total capacity to more than 1GW. By increasing the number of turbines operating at the facility it increases the range of services that the grid can call upon from the site.

  1. Long-term electricity solutions

However, storage technologies as they exist today cannot alone offer all the solutions the UK will need to achieve its net zero targets. While technologies like pumped storage can generate for the better part of a day, longer periods of unfavourable conditions for renewables will need new approaches.

In March 2021, for example, the UK experienced its longest cold and calm spell in more than a decade, with wind farms operating at just 11% of their capacity for 11 days straight, according to Electric Insights.

The shortfall in the country’s primary source of renewable power was made up for by gas power stations. But in a net zero future, such responses will only be feasible if they’re part of carbon capture and storage systems or replaced by other carbon neutral or energy storage solutions.

Generating enough power to supply an electrified future, as well as being able to take pressure off the grid and provide balancing services will require a range of technologies working in tandem over extended periods.

Interconnectors with neighbouring countries, for example, can work alongside storage solutions to shed excess power to where there is greater demand. Similarly, rather than curtailing wind or solar power, extra electricity could be used for electrolysis to produce hydrogen. Other functions may include demand side response where heavy power users are incentivised to reduce their electricity usage during peak periods helping to reduce demand.

To achieve stable, reliable, net zero electricity systems the UK needs to act now to not only replace fossil fuels with renewables but put the essential energy storage and balancing solutions in place, that means electricity is there when you turn on a lightbulb.

What is sustainable forest management?

Sustainable forest management is frequently defined in terms of providing a balance of social, environmental, and economic benefits, not just for today but for the future too. It might be seen as the practice of maintaining forests to ensure they remain healthy, absorb more carbon than they release, and can continue to be enjoyed and used by future generations.

To achieve this, foresters apply science, knowledge, and standards that help ensure forests continue to play an important role in the wellbeing of people and the planet.

Managed forests, also called working forests, fulfil a variety of environmental, social, and economic functions. These range from forests managed to attract certain desired wildlife species, to forests grown to provide saw timber and reoccurring revenue for landowners.

How are forests sustainably managed?

How forests are managed depends on landowner goals – managing for recreation and wildlife, focusing on maximising production of wood products, or both. Each forest requires management tailored to its owner’s or manager’s objectives.

There are many ways to manage forests to keep them healthy – there is no ‘one size fits all’ – but keeping track of how they are doing can be tricky. One alternative for monitoring forests is to use satellite imagery.

One common sustainable forestry practice is thinning, which involves periodically removing smaller, unhealthy, or diseased trees to enable stronger ones to thrive. Thinning reduces competition between trees for resources like sunlight and water, and it can also help promote biodiversity by creating more space for other forest flora.

The wood removed from forests through thinning is sometimes not high-quality enough to be used in industries such as construction or furniture. However, the biomass industry can use it to make compressed wood pellets; a feedstock for renewable source electricity.

By providing a market for low-quality wood, pellet production encourages landowners to carry out thinnings. This practice improves the health of the forest, and helps support better growth, greater carbon storage, and creates more valuable woodland.

Fast facts

What are the environmental benefits of sustainably managed forests?

Through their ability to act as carbon sinks, forests are an important part of meeting global climate goals like the Paris Agreement and the UK’s own target of reaching net zero emissions by 2050.

When managed effectively through thinning or active harvesting, and replanting and regeneration, forests can often sequester – or absorb and store – more carbon than forests that are left untouched, increasing productivity and improving planting material.

Harvesting trees before they reach an age when growth slows or plateaus can help prevent fire damage, pests, and disease, so timing of final cutting is important. Though the vast majority of timber from such cutting will go to other markets (construction, furniture etc) and secure higher prices from those markets, being able to sell lower quality wood for biomass provides the landowner with some extra revenue.

Sustainably managed forests also help achieve other environmental goals, such as sustaining biodiversity, protecting sensitive sites and providing clean air and water. Managed forests also have substantial water absorption capacity preventing flooding by slowing the flow of sudden downpours and helping to prevent nearby rivers and streams from overfilling.

Wood from working forests also help tackle climate change in that high-value wood from harvested trees can be used to make timber for the construction or furniture sectors. These wood products lock up carbon for extended periods of time, and the wood can be used at end-of life to displace fossil fuels. Using wood also means materials such as concrete, bricks or steel are not used, and these materials have a large carbon footprint compared to wood.

What are the socioeconomic benefits of sustainably managed forests?

There are also social and economic benefits to managing forests. Sustainably managed working forests make vital contributions both to people and to the planet.

The commercial use of wood in industries like furniture and construction drives revenue for landowners. This encourages landowners to continue to replant forests and manage them in a sustainable way that continues to deliver returns.

Healthy forests can also improve living standards for local communities for jobs and helping to address unemployment in rural regions. Managed forests can also improve access for recreation. On a larger scale, sustainable forestry can offer a valuable export for regions and nations and foster trade between countries.

Go deeper 

How is carbon stored?

Carbon storage is the process of capturing and trapping that CO2. This can occur naturally in the form of carbon sinks like forests, oceans, and soils that store carbon. However, it can also be manually carried out through technology.   

One of the most well-established ways of storing carbon through the use of technology is by injecting CO2 into naturally occurring geological formations that can lock in or sequester the molecule on a permanent basis. Carbon storage is the final phase of the carbon capture, usage, and storage (CCUS) process.

Why do we need to store carbon?

Global bodies like the UN’s Intergovernmental Panel on Climate Change (IPCC), as well as the UK’s own Climate Change Committee, emphasise carbon capture and storage as crucial to achieving net zero emissions and meeting the Paris Agreement’s goal of limiting temperature rises to within 1.5oC.

This includes supporting forest growth through afforestation and reforestation, and other nature-based solutions to store carbon, alongside CCUS technology.

The European Commission also highlights CCUS’s role in balancing increased energy demand and continued fossil fuel use in the future, with the need to reduce greenhouse gas emissions and prevent them entering the atmosphere.

How is carbon captured and transported to storage?

In naturally occurring examples, forests and ocean fauna absorb carbon through photosynthesis. When the vegetation eventually decomposes the carbon is sequestered into soil and seabeds.

Carbon can also be captured from emissions sources such as factories or power plants. The carbon is captured either pre-combustion, where it is removed from the fuel source, or post-combustion, where it is removed from exhaust fumes in the form of CO2.

The CO2 is then converted into a supercritical state where it has the viscosity of a gas but the density of a liquid, meaning it can travel more easily through pipelines. It can also be transported via trucks and ships, but pipelines are the most efficient.

Where can carbon be stored?

Natural carbon sinks differ all over the world, from peatlands in Scotland to Pacific coral reefs to the massive forests that cover countries like Russia, Canada, and Brazil. Wooden buildings also act as carbon storage as they maintain the carbon within the wood for long time periods.

The CO2 captured by manmade technologies can also be stored in different types of geological formation: unused natural gas reserves, saline aquifers, and un-minable coal mines.

The North Sea, with its expansive layers of porous sandstone, also offers the UK alone an estimated 70 billion tonnes of potential CO2 storage space.

If negative emissions technologies (which actively remove emissions from the atmosphere) were to capture and store the equivalent amount of CO2 as the 258 million tonnes expected to remain in the UK economy in 2050, it would take up just 0.36% of the available storage space.

Years of research by the oil and gas industries mean many such geological structures have been mapped and are well understood all around the world.

Carbon storage fast facts

How is the carbon kept in place?

In nature-based carbon sinks the carbon does not always remain in one location. In a forest, for example, trees and plants will hold carbon until the end of their lifetime after which they decompose, releasing some CO2 into the atmosphere while some is sequestered into soil.

When CO2 captured through CCUS is stored several things can happen to it in a geological storage site. It can be caught in the minute intervening spaces within the rock through capillary action, or trapped by a layer of impermeable cap-rock, which prevents it from moving upwards.

CO2 may also dissolve in the water and then sinks as it is heavier than normal water. The carbonated water reacts with basaltic rocks which cover most of the ocean floor. The reaction releases elements like calcium, magnesium, and iron into the water stream. Over time, these elements combine with the dissolved CO2 to form stable carbonate minerals that permanently fill pores within the rock.

How does CO2 enter the storage sites?

The CO2 is injected into the porous rocks of depleted or unused natural gas or oil reserves, as well as saline aquifers – geologic strata, filled with brine or saline water. Porous rock is filled with holes and gaps between the grains that make up the rock. When CO2 is injected into these structures, the CO2 floods the pores, displacing the brine or remnants of oil and gas. It then spreads out and is trapped in the dome-like structures of the rock strata called anticlines.

How long can CO2 be stored?

Appropriately selected and maintained geological reservoirs are “very likely” to retain 99% of sequestered carbon for more than 100 years and are “likely” to retain 99% of sequestered carbon for more than 1,000 years, according to the 2005 Special Report on CCS by the IPCC. Another study by Nature found that more than 98% of injected CO2 will remain stored for over 10,000 years.

In natural carbon sinks, the length of time that carbon is stored varies and depends on environments being preserved. Peatland, for example, builds up over thousands of years storing carbon. However, as peatlands degrade from attempts to drain them to create arable land, as well as peat extraction for fuel, they begin to emit CO2. The lifecycle of a tree by contrast is relatively short before it decomposes and releases some CO2 back into the atmosphere.

The ability for geological storage to contain CO2 for millennia means it can truly remove and permanently store emissions.

Go deeper

Expanding Cruachan: An epic energy storage project to help unlock a renewable future

Loch Awe from Cruachan

At the beginning of March 2021, Britain experienced its longest ‘wind drought’ in a decade. For eleven days, wind output averaged just 11% of the UK electricity mix – less than a quarter of the average output in the month before and the month after. The power system was able to cope as gas power stations made up most of the shortfall.

But keeping the lights on will become increasingly challenging as electricity generation shifts from carbon-intensive coal and gas towards weather-dependent wind and solar technologies, where supply is variable and intermittent. One solution to maintain a stable, resilient power supply as the electricity system decarbonises is increasing the amount of long-duration energy storage that can plug gaps and balance the gird.

Pumped hydro storage – a tried and tested solution

The largest-capacity form of electricity storage by far, pumped storage hydro plays a key role in the energy mix and stabilising the grid. Which is why, following a feasibility study, Drax has kickstarted plans to extend our pumped hydro storage power station at Cruachan in the Scottish Highlands.

By drilling a second cavern inside Ben Cruachan, Cruachan 2, to the east of the original power station, will add up to 600 MW in generating capacity, more than doubling the site’s total capacity to more than 1GW. It’s an epic project and one that could provide power for around a million homes.

The original Cruachan facility has been supplying and absorbing excess power to the grid since 1965. Acting as a ‘green battery’, it stores low-carbon energy when there is over supply and releases it when demand is high.

Designed at a time when the grid was powered by nuclear or coal-fired plants that could only adjust output slowly, Cruachan’s technology is still cutting edge and has proved equally successful at balancing more volatile supply and demand as power generation has shifted towards renewables and low-carbon sources.

“Cruachan plays a critical role in the UK energy system today because it provides a unique range of services for a single asset – it can both generate electricity at 440 MW but it can also pump which means it takes that power off the system so in effect you can deploy greater renewable resources. And if there’s too much wind in the system, rather than curtail wind farms you can pump to take 482 MW off the system,” says Steve Marshall, Development Manager at Cruachan 2.

Cruachan Power Station

Pumped Storage Hydro (PSH) at Cruachan Power Station [click to view/download]

Enabling more renewables on the system

As Marshall points out, too much wind can be as problematic as too little. With the government’s ambition to quadruple offshore wind capacity by 2030 to 40 gigawatts (GW), the grid will have to manage significantly more wind-generated power, and consequently much greater fluctuations in supply.

Currently, the demand left to be met by renewable generation ranges from 10 GW to 30 GW throughout the year. But modelling by Imperial College London suggests that with 40 GW of offshore wind this range could expand, from 30 GW right down to minus 30 GW, in other words, renewables would produce significantly more than national demand. Without long-term storage capacity, this energy will be wasted, forcing the grid to pay wind farms to stop generating.

“There’s a lot of offshore wind coming online in Scotland that has to be transported through the transmission system to England where the demand is,” says Marshall. “The transmission system in 2030 could become saturated more than 20-30% of the time because there’s too much renewable power. You have a choice: either build more transmission lines or more energy storage that can take that power off the system.”

Turbine Hall at Cruachan Power Station

Plugging the inertia gap

As well integrating more renewables into the electricity mix, the Cruachan expansion may also help meet the inertia shortfall. Inertia – stored kinetic energy – acts as a ‘shock absorber’ in the system, smoothing out sudden changes in power supply and demand and ensuring that frequency remains stable at 50 Hz. This is a critical, as just 1% variation above or below this standard can damage equipment and infrastructure.

Many renewable technologies, such as wind turbines and solar PV panels, aren’t built around spinning turbines that synchronise with the grid and so lack inherent inertia. Cruachan’s turbines, on the other hand, spin at 500/600rpm and produce electricity at the grid frequency of 50 Hz providing inertia that helps the grid remain stable. Indeed in 2020, National Grid ESO contracted a unit at Cruachan to provide inertia 24/7 as part of a 6 year contract

“The grid calls on Cruachan three to four hundred times a month, with generation mode changes ranging from hours to very short bursts,” explains Marshall. Increasing the number of turbines would allow Cruachan to respond to a greater range of the grid’s needs.

With more units you have more flexibility,” says Marshall. “If you start to change the generating unit sizes to 150 MW or 200MW machines you get different levels of inertia that offers more options to the grid.”

Building on Cruachan’s legacy

While automated drilling processes mean that the rock will no longer need to be excavated by ‘Tunnel Tigers’, the crews that hand-drilled, blasted, and excavated granite from the mountainside, Cruachan 2 will still create an estimated 300 jobs during peak construction and support around 900 jobs across the country. And by bringing around 300 GW a year of renewable energy to the grid, and reducing requirement for further transmission lines the expansion has the potential to save consumers more than £350 million in energy costs by 2050.

“With the increased deployment of renewables there is a need for more assets like Cruachan,” says Marshall. The ambition is to have Cruachan 2 operational by 2030 and work could start as early as 2024.

But progress is dependent on the government providing support through a revenue stabilisation mechanism for such a long-term, large-scale energy storage project. A study by KPMG found that a Cap and Floor regime, similar to what has unlocked a wave of investment in cross-border inter-connectors, could be the best mechanism for long-duration storage. If this is forthcoming, the expansion could play a vital role in stabilising the grid and smoothing the UK’s transition to a net zero power system.

Forests, net zero and the science behind biomass

Tackling climate change and spurring a global transition to net zero emissions will require collaboration between science and industry. New technologies and decarbonisation methods must be rooted in scientific research and testing.

Drax has almost a decade of experience in using biomass as a renewable source of power. Over that time, our understanding around the effectiveness of bioenergy, its role in improving forest health and ability to deliver negative emissions, has accelerated.

Research from governments and global organisations, such as the UN’s Intergovernmental Panel on Climate Change (IPCC) increasingly highlight sustainably sourced biomass and bioenergy’s role in achieving net zero on a wide scale.

The European Commission has also highlighted biomass’ potential to provide a solution that delivers both renewable energy and healthy, sustainably managed forests.  Frans Timmermans, the executive vice-president of the European Commission in charge of the European Green Deal has emphasised it’s importance in bringing economies to net zero, saying: “without biomass, we’re not going to make it. We need biomass in the mix, but the right biomass in the mix.”

The role of biomass in a sustainable future

Moving away from fossil fuels means building an electricity system that is primarily based on renewables. Supporting wind and solar, by providing electricity at times of low sunlight or wind levels, will require flexible sources of generation, such as biomass, as well as other technologies like increased energy storage.

In the UK, the Climate Change Committee’s (CCC) Sixth Carbon Budget report lays out its Balanced Net Zero Pathway. In this lead scenario, the CCC says that bioenergy can reduce fossil emissions across the whole economy by 2 million tonnes of CO2 or equivalent emissions (MtCO2e) per year by 2035, increasing to 2.5 MtCO2e in 2045.

Foresters in working forest, Mississippi

Foresters in working forest, Mississippi

Biomass is also expected to play a crucial role in supplying biofuels and hydrogen production for sectors of the global economy that will continue to use fuel rather than electricity, such as aviation, shipping and industrial processes. The CCC’s Balanced Net Zero Pathway suggest that enough low-carbon hydrogen and bioenergy will be needed to deliver 425 TWh of non-electric power in 2050 – compared to the 1,000 TWh of power fossil fuels currently provide to industries today.

However, bioenergy can only be considered to be good for the climate if the biomass used comes from sustainably managed sources. Good forest management practises ensure that forests remain sustainable sources of woody biomass and effective carbon sinks.

A report co-authored by IPCC experts examines the scientific literature around the climate effects (principally CO2 abatement) of sourcing biomass for bioenergy from forests managed according to sustainable forest management principles and practices.

The report highlights the dual impact managed forests contribute to climate change mitigation by providing material for forest products, including biomass that replace greenhouse gas (GHG)-intensive fossil fuels, and by storing carbon in forests and in long-lived forest products.

The role of biomass and bioenergy in decarbonising economies goes beyond just replacing fossil fuels. The addition of carbon capture and storage (CCS) to bioenergy to create bioenergy with carbon capture and storage (BECCS) enables renewable power generation while removing carbon from the atmosphere and carbon cycle permanently.

The negative emissions made possible by BECCS are now seen as a fundamental part of many scenarios to limit global warming to 1.5oC above pre-industrial levels.

BECCS and the path to net zero

The IPCC’s special report on limiting global warming to 1.5oC above pre-industrial levels, emphasises that even across a wide range of scenarios for energy systems, all share a substantial reliance on bioenergy – coupled with effective land-use that prevents it contributing to deforestation.

The second chapter of the report deals with pathways that can bring emissions down to zero by the mid-century. Bioenergy use is substantial in 1.5°C pathways with or without CCS due to its multiple roles in decarbonising both electricity generation and other industries that depend on fossil fuels.

However, it’s the negative emissions made possible by BECCS that make biomass  instrumental in multiple net zero scenarios. The IPCC report highlights BECCS alongside the associated afforestation and reforestation (AR), that comes with sustainable forest management, are key components in pathways that limit climate change to 1.5oC.

Graphic showing how BECCS removes carbon from the atmosphere. Click to view/download

There are two key factors that make BECCS and other forms of emissions removals so essential: The first is their ability to neutralise residual emissions from sources that are not reducing their emissions fast enough and those that are difficult or even impossible to fully decarbonise. Aviation and agriculture are two sectors vital to the global economy with hard-to-abate emissions. Negative emissions technologies can remove an equivalent amount of CO2 that these industries produce helping balance emissions and progressing economies towards net zero.

The second reason BECCS and other negative emissions technologies will be so important in the future is in the removal of historic CO2 emissions. What makes CO2 such an important GHG to reduce and remove is that it lasts much longer in the atmosphere than any other. To help reach the Paris Agreement’s goal of limiting temperature rises to below 1.5oC removing historic emissions from the atmosphere will be essential.

In the UK, the  CCC’s 2018 report ‘Biomass in a low-carbon economy’ also points to BECCS as both a crucial source of energy and emissions abatement.

It suggests that power generation from BECCS will increase from 3 TWh per year in 2035 to 45 TWh per year in 2050. It marks a sharp increase from the 19.5 TWh that biomass (without CCS) accounted for across 2020, according to Electric Insights data. It also suggests that BECCS could sequester 1.1 tonnes of CO2 for every tonne of biomass used, providing clear negative emissions.

However, the report makes clear that unlocking the potential of bioenergy and BECCS is only possible when biomass stocks are managed in a sustainable way that, as a minimum requirement, maintains the carbon stocks in plants and soils over time.

With increased attention paid to forest management and land use, there is a growing body of evidence that points to bioenergy as a win-win solution that can decarbonise power and economies, while supporting healthy forests that effectively sequester CO2.

How bioenergy ensures sustainable forests

Biomass used in electricity generation and other industries must come from sustainable sources to offer a renewable, climate beneficial [or low carbon] source of power.

UK legislation on biomass sourcing states that operators must maintain an adequate inventory of the trees in the area (including data on the growth of the trees and on the extraction of wood) to ensure that wood is extracted from the area at a rate that does not exceed its long-term capacity to produce wood. This is designed to ensure that areas where biomass is sourced from retain their productivity and ability to continue sequestering carbon.

Ensuring that forestland remains productive and protected from land-use changes, such as urban creep, where vegetated land is converted into urban, concreted spaces, depends on a healthy market for wood products. Industries such as construction and furniture offer higher prices for higher-quality wood. While low-quality, waste wood, as well as residues from forests and wood-industry by-products, can be bought and used to produce biomass pellets.

A report by Forest 2 Market examined the relationship between demand for wood and forests’ productivity and ability to sequester carbon in the US South, where Drax sources about two-thirds of its biomass.

The report found that increased demand for wood did not displace forests in the US South. Instead, it encouraged landowners to invest in productivity improvements that increased the amount of wood fibre and therefore carbon contained in the region’s forests.

A synthesis report, which examines a broad range of research papers,  published in Forest Ecology and Management in March of 2021, concluded from existing studies that claims of large-scale damage to biodiversity from woody biofuel in the South East US are not supported. The use of these forest residues as an energy source was also found to lead to net GHG greenhouse emissions savings compared to fossil fuels, according to Forest Research.

Importantly the research shows that climate risks are not exacerbated because of biomass sourcing; in fact, the opposite is true with annual wood growth in the US South increasing by 112% between 1953 and 2015.

Delivering a “win-win solution”

The European Commission’s JRC Science for Policy literature review and knowledge synthesis report ‘The use of woody biomass for energy production in the EU’ suggests  a win-win forest bioenergy pathway is possible, that can reduce greenhouse gas emissions in the short term, while at the same time not damaging, or even improving, the condition of forest ecosystems.

However, it also makes clear “lose-lose” situations is also a possible, in which forest ecosystems are damaged without providing carbon emission reductions in policy-relevant timeframes.

Win-win management practices must benefit climate change mitigation and have either a neutral or positive effect on biodiversity. A win-win future would see the afforestation of former arable land with diverse and naturally regenerated forests.

The report also warns of trade-offs between local biodiversity and mitigating carbon emissions, or vice versa. These must be carefully navigated to avoid creating a lose-lose scenario where biodiversity is damaged and natural forests are converted into plantations, while BECCS fails to deliver the necessary negative emissions.

In a future that will depend on science working in collaboration with industries to build a net zero future continued research is key to ensuring biomass can deliver the win-win solution of renewable electricity with negative emissions while supporting healthy forests.

Updating on ambitions for pellet plants, biomass sales and BECCS

Foresters in working forest, Mississippi

Highlights

  • New targets for pellet production and biomass sales
    • Biomass pellet production – targeting 8Mt pa by 2030 (currently c.4Mt)
    • Biomass pellet sales to third parties – targeting 4Mt pa by 2030 (currently c.2Mt)
  • Continued progress with UK BECCS(1) and biomass cost reduction
    • BECCS at Drax Power Station – targeting 8Mt pa of negative CO2 emissions by 2030
    • Biomass cost reduction – continuing to target biomass production cost of $100/t(2)
  • £3bn of investment in opportunities for growth 2022 to 2030
    • Pellet production, UK BECCS and pumped storage
    • Self-funded and significantly below 2x net debt to Adjusted EBITDA(3) in 2030
  • Development of additional investment opportunities for new-build BECCS
    • Targeting 4Mt pa of negative CO2 emissions outside of UK by 2030
  • Targeting returns significantly in excess of the Group’s cost of capital

Will Gardiner, Drax Group CEO, said:

Drax Group CEO Will Gardiner

Will Gardiner, CEO, Drax Group. Click to view/download.

“Drax has made excellent progress during 2021 providing a firm foundation for further growth. We have advanced our BECCS project – a vital part of the East Coast Cluster that was recently selected to be one of the UK’s two priority CCS projects. And we’re now setting out a strategy to take the business forward, enabling Drax to make an even greater contribution to global efforts to reach net zero.

“We believe Drax can deliver growth and become a global leader in sustainable biomass and negative emissions and a UK leader in dispatchable, renewable generation. We aim to double our sustainable biomass production capacity by 2030 – creating opportunities to double our sales to Asia and Europe, where demand for biomass is increasing as countries transition away from coal.

“As a global leader in negative emissions, we’re going to scale up our ambitions internationally. Drax is now targeting 12 million tonnes of carbon removals each year by 2030 by using bioenergy with carbon capture and storage (BECCS). This includes the negative emissions we can deliver at Drax Power Station in the UK and through potential new-build BECCS projects in North America and Europe, supporting a new sector of the economy, which will create jobs, clean growth and exciting export opportunities.”

Capital Markets Day

Drax is today hosting a Capital Markets Day for investors and analysts.

Will Gardiner and members of his leadership team will update on the Group’s strategy, market opportunities and development projects. The day will outline the significant opportunities Drax sees to grow its biomass supply chain, biomass sales and BECCS, as well as long-term dispatchable generation from biomass and pumped storage.

Purpose and ambition

The Group’s purpose is to enable a zero carbon, lower cost energy future and its ambition is to be a carbon negative company by 2030. The Group aims to realise its purpose and ambition through three strategic pillars, which are closely aligned with global energy policies, which increasingly recognise the unique role that biomass can play in the fight against climate change.

Strategic pillars

  • To be a global leader in sustainable biomass pellets
  • To be a global leader in negative emissions
  • To be a leader in UK dispatchable, renewable generation

The development of these pillars remains underpinned by the Group’s continued focus on safety, sustainability and biomass cost reduction.

A Global leader in sustainable biomass pellets

Drax believes that the global market for sustainable biomass will grow significantly, creating opportunities for sales to third parties in Asia and Europe, BECCS, generation and other long-term uses of biomass. Delivery of these opportunities is supported by the expansion of the Group’s biomass pellet production capacity.

The Group has 13 operational pellet plants with nameplate capacity of c.4Mt, plus a further two plants currently commissioning and other developments/expansions which will increase this to c.5Mt once complete.

Drax is targeting 8Mt of production capacity by 2030, which will require the development of over 3Mt of new biomass pellet production capacity. To deliver this additional capacity Drax is developing a pipeline of organic projects, principally focused on North America. Drax expects to take a final investment decision on 0.5-1Mt of new capacity in 2022, targeting returns significantly in excess of the Group’s cost of capital.

Underpinned by this expanded production capacity, Drax aims to double sales of biomass to third parties to 4Mt pa by 2030, developing its market presence in Asia and Europe, facilitated by the creation of new business development teams in Tokyo and London.

Drax is a major producer, supplier and user of biomass, active in all areas of the supply chain with long-term relationships and almost 20 years of experience in biomass operations. The Group’s innovation in coal-to-biomass engineering, supply chain management and leadership in negative emissions can be deployed alongside its large, reliable and sustainable supply chain to support customer decarbonisation journeys with long-term partnerships.

Drax expects to sell all the biomass it produces, based on an appropriate market price, typically with long-term index-linked contracts.

Continued focus on cost reduction

In 2018 the Group’s biomass production cost was $166/t(2). At the H1 2021 results, through a combination of fibre sourcing, operational improvements and capacity expansion (including the acquisition of Pinnacle Renewable Energy Inc), the production cost had reduced to $141/t(2). Drax’s aims to use the combined expertise of Drax and Pinnacle to apply learnings and cost savings across its portfolio and continues to target $100/t(2) (£50/MWh equivalent(4)) by 2027.

A Global leader in negative emissions

The Intergovernmental Panel on Climate Change(5) and the Coalition for Negative Emissions(6) have both outlined a clear role for BECCS in delivering the negative emissions required to limit global warming to 1.5oC above pre-industrial levels and to achieve net zero by 2050, identifying a requirement of between 2bn and 7bn tonnes of negative emissions globally from BECCS.

Separately, the UK Government has recently published its Net Zero Strategy and Biomass Policy Statement reaffirming the established international scientific consensus that sustainable biomass is renewable and that it will play a critical role in helping the UK achieve its climate targets. It also signposted an ambition for at least 5Mt pa of negative emissions from BECCS and Direct Air Capture by 2030, 23Mt pa by 2035 and up to 81Mt pa by 2050. The reports commit the Government to the development during 2022 of a financial model to support BECCS to meet these requirements.

Subject to the right regulatory environment, Drax plans to transform Drax Power Station into the world’s biggest carbon capture project using BECCS to permanently remove 8Mt of CO2 emissions from the atmosphere each year by 2030. The project is well developed, the technology is proven and an investment decision could be taken in 2024 with the first BECCS unit operational in 2027 and a second in 2030, subject to the right investment framework.

The Group aims to build on this innovation with a new target to deliver 4Mt of negative CO2 emissions pa from new-build BECCS outside of the UK by 2030 and is currently developing models for North American and European markets.

A UK leader in dispatchable, renewable generation

The UK’s plans to achieve net zero by 2050 will require the electrification of heating and transport systems, resulting in a significant increase in demand for electricity. Drax believes that over 80% of this could be met by intermittent renewable and inflexible low-carbon energy sources – wind, solar and nuclear. However, this will only be possible if the remaining power sources can provide the dispatchable power and non-generation system support services the power system requires to ensure security of supply and to limit the cost to the consumer.

Long-term biomass generation and pumped storage hydro can provide these increasingly important services. Drax Power Station is the UK’s largest source of renewable power by output and the largest dispatchable plant. The Group is continuing to develop a lower cost operating model for this asset, supported by a reduction in fixed costs associated with the end of coal operations.

Drax is also developing an option for new pumped storage – Cruachan II – which could take a final investment decision in 2024 and be operational by 2030, providing an additional 600MW of dispatchable long-duration storage to the power system.

In its Smart Systems and Flexibility plan (July 2021), the UK Government described long-duration storage technologies as essential for achieving net zero and has committed to take actions to de-risk investment for large-scale and long-duration storage.

Capital allocation and dividend

Strategic capital investment (3Mt of new biomass pellet production capacity, BECCS at Drax Power Station and Cruachan II) is expected to be in the region of £3bn between 2022 and 2030, backed by long-term contracted cashflows and targeting high single-digit returns and above.

No final investment decision has been taken on any of these projects and both BECCS and Cruachan II remain subject to further clarity on regulatory and funding mechanisms.

The Group believes these investments can be self-funded through strong cash generation over the period with net debt to Adjusted EBITDA significantly below 2x at the end of 2030, providing flexibility to support further investment, such as new-build BECCS as these options develop.

Drax remains committed to the capital allocation policy established in 2017, noting that average annual dividend growth was around 10% in the last 5-years.

Webcast and presentation material

The event will be webcast from 10.00am and the material made available on the Group’s website from 7:00am. Joining instructions for the webcast and presentation are included in the links below.

https://secure.emincote.com/client/drax/drax016

Notes:
(1) BioEnergy Carbon Capture and Storage.
(2) Free on Board – cost of raw fibre, processing into a wood pellet, delivery to Drax port facilities in US and Canada, loading to vessel for shipment and overheads.
(3) Earnings before interest, tax, depreciation, amortisation, excluding the impact of exceptional items and certain remeasurements.
(4) From c.£75/MWh in 2018 to c.£50/MWh, assuming a constant FX rate of $1.45/£.
(5) Coalition for Negative Emissions (June 2021).
(6) Intergovernmental Panel on Climate Change (August 2021).

Enquiries:

Drax Investor Relations: Mark Strafford
+44 (0) 7730 763 949

Media:

Drax External Communications: Ali Lewis
+44 (0) 7712 670 888

Website: www.drax.com/uk

Forward Looking Statements
This announcement may contain certain statements, expectations, statistics, projections and other information that are or may be forward-looking. The accuracy and completeness of all such statements, including, without limitation, statements regarding the future financial position, strategy, projected costs, plans, investments, beliefs and objectives for the management of future operations of Drax Group plc (“Drax”) and its subsidiaries (the “Group”), including in respect of Pinnacle Renewable Energy Inc. (“Pinnacle”), together forming the enlarged business, are not warranted or guaranteed. By their nature, forward-looking statements involve risk and uncertainty because they relate to events and depend on circumstances that may occur in the future. Although Drax believes that the statements, expectations, statistics and projections and other information reflected in such statements are reasonable, they reflect the Company’s current view and beliefs and no assurance can be given that they will prove to be correct. Such events and statements involve significant risks and uncertainties. Actual results and outcomes may differ materially from those expressed or implied by those forward-looking statements. There are a number of factors, many of which are beyond the control of the Group, which could cause actual results and developments to differ materially from those expressed or implied by such forward-looking statements. These include, but are not limited to, factors such as: future revenues being lower than expected; increasing competitive pressures in the industry; and/or general economic conditions or conditions affecting the relevant industry, both domestically and internationally, being less favourable than expected; change in the policy of key stakeholders, including governments or partners or failure or delay in securing the required financial, regulatory and political support to progress the development of Drax and its operations. We do not intend to publicly update or revise these projections or other forward-looking statements to reflect events or circumstances after the date hereof, and we do not assume any responsibility for doing so.

END

2021 Adjusted EBITDA around top of current analyst expectations

Highlights

  • Major planned outage on CfD(1) unit completed on schedule
  • Incremental power sales on biomass ROC(2) units since July 2021 capturing higher prices
  • Commissioning of 550Kt of new biomass pellet production capacity in US Southeast
  • 2021 Adjusted EBITDA(3) – around the top end of current range of analyst expectations, subject to continued baseload generation on biomass units throughout December
  • Positive policy developments for biomass and framework for UK BECCS(4)

Pellet Production

In North America, the Group has made good progress integrating Pinnacle Renewable Energy Inc. (“Pinnacle”) since acquisition in April 2021 and is currently in the final stages of commissioning over 360Kt of new production capacity at Demopolis, Alabama. In October 2021, the Group commissioned a 150Kt expansion at its LaSalle plant in Louisiana and at Leola, Arkansas, a new 40Kt satellite plant is due to be commissioned in December.

These developments, along-side incremental new capacity in 2022, support the Group’s continued focus on production capacity expansion and cost reduction. Once fully commissioned, Drax will operate around 5Mt of production capacity across three major North American fibre baskets – British Columbia, Alberta and the US Southeast, of which around 2Mt are contracted to high-quality third-party counterparties under long-term contracts, with the balance available for Drax’s own-use requirements.

There has been no disruption to own-use or third-party volumes from the global supply chain delays currently being experienced in some other sectors. However, as outlined at the Group’s 2021 Half Year Results, summer wildfires led to pellet export restrictions in Canada. More recently, heavy rainfall and flooding in British Columbia have led to some further disruption to rail movements and regional supply chains. Through its enlarged and diversified supply chain Drax has been able to manage and limit the impact on biomass supply for own-use and to customers.

In addition, due to the Group’s active and long-term hedging of freight costs, there has been no material impact associated with higher market prices for ocean freight. The Group uses long-term contracts to hedge its freight exposure on biomass for its Generation business, and following the acquisition of Pinnacle, is taking steps to optimise freight requirements between production centres in the US Southeast and Western Canada, and end markets in Asia and Europe.

Generation

In the UK, the Group’s biomass and pumped storage generation assets have continued to play an important role providing stability to the UK power system at a time when higher gas prices, European interconnector issues, and periods of low wind have placed the system under increased pressure. The Group’s strong forward sold position means that it has not been a significant beneficiary of higher power prices from these activities in 2021 but has been able to increase forward hedged prices in 2022 and 2023.

In March, the Group’s two legacy coal units ended commercial generation activities and will formally close in September 2022 following the fulfilment of their Capacity Market obligations. Reflecting the system challenges described above, these units were called upon in the Balancing Mechanism by the system operator for limited operations in September and November. These short-term measures helped to stabilise the power system during periods of system stress and have not resulted in any material increase in the Group’s total carbon emissions.

In September, the Generation business experienced a two-week unplanned outage on one biomass unit operating under the ROC scheme. The unit’s contracted position in this period was bought back and the generation reprofiled across the two unaffected biomass ROC units and deferred until the fourth quarter. During this period, the Group’s pumped storage power station (Cruachan) provided risk mitigation from the operational or financial impact of any additional forced outages.

In November, the Generation business successfully completed a major 98 day planned outage on its biomass CfD unit, which included the third in a series of high-pressure turbine upgrades. Drax now expects the unit to benefit from thermal efficiency improvements and lower maintenance costs, incrementally reducing the cost of biomass generation at Drax Power Station.

Customers

The Group continues to expect the Customers business will return to profitability at the Adjusted EBITDA level for 2021, inclusive of an expected increase in mutualisation costs associated with the failure of a number of energy supply businesses in the second half of 2021. Separately, the Group is continuing to assess operational and strategic solutions to support the development of the SME(5) supply business.

Full year expectations

Reflecting these factors, the Group now expects that full year Adjusted EBITDA for 2021 will be around the top of the range of current analyst expectations(6), subject to good operational performance during December, including baseload running of all four biomass units. The Group’s financial expectations do not include any Balancing Mechanism activity in December for the coal units.

Drax continues to expect net debt to Adjusted EBITDA to return to around 2x by the end of 2022.

Negative emissions

In October, the UK Government selected the East Coast Cluster and Hynet as the first two regional clusters in the UK to take forward the development of the infrastructure required for carbon capture and storage. In addition, the UK Government published its Net Zero Strategy and Biomass Policy Statement, reaffirming the established international scientific consensus that sustainable biomass is renewable and indicating that it will play a critical role in helping the UK achieve its climate targets. It also signposted an ambition for at least 5Mt pa of negative emissions from BECCS and Direct Air Capture by 2030, 23Mt pa by 2035 and up to 81Mt pa by 2050. The reports commit the Government to the development during 2022 of a financial model to support the development of BECCS to meet these requirements.

The Group is continuing to progress its work on BECCS with the aim to develop 8Mt of negative CO2 emissions pa at Drax Power Station by 2030 and expects to make a decision on the commencement of a full design study in the coming weeks.

Generation contracted power sales

As at 25 November 2021, Drax had 34.3TWh of power hedged between 2021 and 2023 at £61.3/MWh as follows:

202120222023
Fixed price power sales (TWh)16.012.45.8
Of which ROC (TWh)10.810.15.8
Of which CfD (TWh)(7)(8)3.82.1-
Other (TWh)1.40.2-
Average achieved price (£ per MWh)54.070.7 61.2
Of which ROC (£ per MWh)56.961.161.2
Of which CfD (£ per MWh)(7)47.3118.3-
Of which Other (£ per MWh)50.058.2-

Since the Group’s last update on 29 July 2021, incremental power sales from the ROC units were 3.3TWh between 2022 and 2023, at an average price of £98.7/MWh.

Notes:
(1) Earnings before interest, tax, depreciation, amortisation, excluding the impact of exceptional items and certain remeasurements.
(2) BioEnergy Carbon Capture and Storage.
(3) Renewable Obligation Certificate.
(4) Contract for Difference.
(5) Small and Medium-size Enterprise.
(6) As at 26 November 2021 analyst consensus for 2021 Adjusted EBITDA was £380 million, with a range of £374-£391 million. The details of this company collected consensus are displayed on the Group’s website.
(7) The CfD biomass unit typically operates as a baseload unit, with power sold forward against a season ahead reference price. The CfD counterparty pays the difference between the season ahead reference price and the strike price. The contracted position therefore only includes CfD volumes and prices for the front six months.
(8) Expected annual CfD volumes of around 5TWh. Lower level of generation in 2021 unit due to major planned outage.

Enquiries:

Drax Investor Relations: Mark Strafford
+44 (0) 7730 763 949

Media:

Drax External Communications: Ali Lewis
+44 (0) 7712 670 888

Website: www.drax.com/uk

Forward Looking Statements
This announcement may contain certain statements, expectations, statistics, projections and other information that are or may be forward-looking. The accuracy and completeness of all such statements, including, without limitation, statements regarding the future financial position, strategy, projected costs, plans, investments, beliefs and objectives for the management of future operations of Drax Group plc (“Drax”) and its subsidiaries (the “Group”), including in respect of Pinnacle Renewable Energy Inc. (“Pinnacle”), together forming the enlarged business, are not warranted or guaranteed. By their nature, forward-looking statements involve risk and uncertainty because they relate to events and depend on circumstances that may occur in the future. Although Drax believes that the statements, expectations, statistics and projections and other information reflected in such statements are reasonable, they reflect the Company’s current view and beliefs and no assurance can be given that they will prove to be correct. Such events and statements involve significant risks and uncertainties. Actual results and outcomes may differ materially from those expressed or implied by those forward-looking statements. There are a number of factors, many of which are beyond the control of the Group, which could cause actual results and developments to differ materially from those expressed or implied by such forward-looking statements. These include, but are not limited to, factors such as: future revenues being lower than expected; increasing competitive pressures in the industry; and/or general economic conditions or conditions affecting the relevant industry, both domestically and internationally, being less favourable than expected; change in the policy of key stakeholders, including governments or partners or failure or delay in securing the required financial, regulatory and political support to progress the development of Drax and its operations. We do not intend to publicly update or revise these projections or other forward-looking statements to reflect events or circumstances after the date hereof, and we do not assume any responsibility for doing so.

END

The jobs needed to build a net zero energy future

Many components are needed to tackle climate change and reach environmental milestones such as meeting the goals of the Paris Agreement. One of those components is the right workforce, large enough and with the necessary skills and knowledge to take on the green energy jobs of a low-carbon future. In 2020, the renewable energy sector employed 11.5 million people around the world, but as the industry continues to expand that workforce will only grow.

Last year, a National Grid report found that in the UK alone, 120,000 jobs will need to be filled in the low-carbon energy sector by 2030, to meet the country’s climate objectives. That figure is expected to rise to 400,000 by 2050.  The UK energy sector as a whole currently supports 738,000 jobs and much of this workforce already has the skills needed for a low carbon society . Others can be reskilled and retrained, helping to bolster the future workforce by supporting employees through the green transition.

At a global level energy sector jobs are expected to increase from 18 million to 26 million by 2050. Jobs that will span the full energy spectrum; from researching and advising on low-carbon solutions to installing and implementing them.

Here are some of the roles that will be key to the low-carbon energy transformation:

A wind farm under construction off the English coast

Wind turbine technicians

According to the International Energy Agency (IEA), wind power is this year set for a 17% increase in global energy generation compared to 2020, the biggest increase of any renewable power source. The IEA also forecasts that wind power will need to grow tenfold by 2050 if the world is to meet the goals of the Paris Agreement. It’s not surprising, therefore, that wind turbine technicians – the professionals who install, inspect, maintain, and repair wind turbines – are in high demand. In the US, wind turbine technician is the fastest-growing job in the country – with 68% growth projected over the 2020-2030 period – to give just one example.

In the UK, many wind turbine technicians have a background in engineering or experience from the wider energy sector. Although there are wind turbine technician and maintenance courses available, they are not a prerequisite, and many employers offer apprenticeships and on-the-job training – smoothing the path for energy professionals to transition into the role.

Solar panel installers

Today, solar photovoltaic (solar PV) is the biggest global employer in renewable energy, accounting for 3.8 million jobs. The IEA also reported a 23% uptick in solar PV installations around the world in 2020. In the UK, there are currently 13.2 gigawatts (GW) of installed solar power capacity. Trade association Solar Energy UK predicts this will need to rise to at least 40 GW by 2030 if the UK is to succeed in becoming a net zero economy by 2050. The trade association believes this could see the creation of 13,000 new solar energy jobs.

Solar panel installers – who carry out the important job of installing and maintaining solar PV – are essential to a low-carbon future. Many solar panel installers in the UK come from a background in electrical installation or have transitioned from engineering. While there are training courses specifically designed for solar panel installers, they are not a necessity, particularly if you already have on-the-job experience in a relevant sector. This makes a move to becoming a solar panel installer relatively easy for someone already working in energy or with a mind for engineering.

Energy consultants

Businesses of all kinds must play a role in the transition to net zero. Organisations must be able to manage their energy use and begin switching to renewable sources. As professionals who advise companies on this process, renewable energy consultants are a key part of the green energy workforce. Aspects of the job include identifying how organisations use their electric assets and helping businesses optimise those assets to build responsiveness and flexibility into energy-intensive operations. The core responsibilities of a renewable energy consultant are to reduce a company’s environmental impact while helping the business reduce energy costs and identifying opportunities.

Carbon accountants

A growing number of businesses are setting targets for reducing their greenhouse gas (GHG) emissions. But that’s only possible if you can first determine what your GHG emissions are and where they come from, which is where the relatively young field of carbon accounting comes in. Through what is known as physical carbon accounting, companies can assess the emissions their activities generate, and where in the supply chain the emissions are occurring. This allows businesses to implement more accurate actions and be realistic in their timelines for reducing emissions.

On a wider scale, accurate carbon accounting will be crucial in certifying emissions reductions or abatement, as well as in the distribution of carbon credits or penalties as whole economies push towards net zero.

Battery technology researchers

Energy storage is essential to a low-carbon energy future.  The ability to store and release energy from intermittent sources such as wind and solar will be crucial in meeting demand and balancing a renewables-driven grid. While many forms of energy storage already exist, developing electric batteries that can be deployed at scale is still a comparatively new and expanding area.

Global patenting activities in the field of batteries and other electricity storage increased at an annual rate of 14% –  four times faster than the average for technology – between 2005 and 2018. However, it’s estimated that to meet climate objectives, the world will need nearly 10,000 GW hours of battery and other electricity storage by 2040. This is 50 times the current level and research and innovation will be crucial to delivering bigger and more efficient batteries.

Farmers and foresters

How we use and manage land will be important in lowering carbon emissions and creating a sustainable future for people and the planet. Crops like corn, sugarcane, and soybean can serve as feedstock for biofuel and bioenergy, and farming by-products such as cow manure can be used in the development of biofuel.

Techniques adopted in the agricultural sector will also be important in optimising soil sequestration capabilities while ensuring it is nutrient-rich enough to grow food. These techniques include the use of biochar, a solid form of charcoal produced by heating biomass without oxygen. Research indicates that biochar can sequester carbon in the soil for centuries or longer. It also helps soil retain water and could contribute to reducing the use of fertilisers by making the soil more nutrient-dense.

Forests, meanwhile, provide material for industries like construction, the by-products from which can serve as feedstock for woody biomass, primarily in the shape of low-grade wood that would otherwise remain unused. Sustainably managed forests, such as those from which Drax sources its biomass, have two-fold importance. They both enable woody biomass for bioenergy and ensure CO2 is removed from the atmosphere as part of the natural carbon cycle.

Biofuel engineers and scientists

Farmers and foresters provide feedstock for biofuels, but it’s biofuel scientists and engineers who research, develop, and enhance them, opening the door to alternative fuels for vehicles, heating, and even jet engines.

According to the IEA, production of biofuel that can be used as an alternative to fossil fuels in the transport sector grew 6% in 2019. However, the organisation forecasts that production will need to increase 10% annually until 2030to be in line with Paris Agreement climate targets.

Scientific innovations that can help boost the production of biofuel around the world, therefore, continues to be vital. As is the work of biofuel engineers who assess and improve existing biofuel systems and develop new ones that can replace fossil fuels like petrol and diesel.

The wealth of knowledge around fuels in the oil and gas industries means there is ample opportunity for scientists and engineers who work with fossil fuels to bring their skills to crucial low-carbon roles.

Geologists

The overriding goal of the Paris Agreement is to limit global warming to “well below” 2 and preferably to 1.5 degrees Celsius, compared to pre-industrial levels. This is an objective the IEA has said will be “virtually impossible” to fulfil without carbon capture and storage (CCS) technologies. CCS entails capturing CO2 and transporting it for safe and permanent underground storage in geological formations such as depleted oil and gas fields, coal seams, and saline aquifers.

According to the Global CCS Institute, the world will need a 100-fold increase on the 27 CCS project currently in operation by 2050. Knowledge and research into rock types, formations, and reactivity will be important in helping identify sites deep underground that can be used for safe, permanent carbon storage, and sequestration. Skills and expertise gained in the oil and gas industries will allow professionals in these sectors to make the switch from careers in fossil fuel to roles that help power a net zero economy.  

Employees working at Drax Power Station

Chemists

The role of chemists is also vital to decarbonisation. Knowledge and research around CO2 is a potent force in the effort to reduce and remove it from the atmosphere.

Technologies like CCS, bioenergy with carbon capture and storage (BECSS) and direct air carbon capture and storage (DACCS) are based around such research. Carbon capture processes are chemical reactions between emissions streams and solvents, often based on amines, and GHGs. Understanding and controlling these processes makes chemistry a key component of delivering carbon capture at the scale needed to help meet climate targets.

Chemists’ role in decarbonisation is far from limited to carbon capture methods. From battery technology to reforestation, chemists’ understanding of the elements can help drive action against climate change.

Bringing together disciplines

Tackling climate change on the scale needed to achieve the aims of the Paris Agreement depends on collaboration between industries, countries, and disciplines. Decarbonisation projects such as the UK’s East Coast Cluster, which encompasses both Zero Carbon Humber and Net Zero Teesside, fuse engineering and construction jobs with scientific and academic work.

Zero Carbon Humber, which brings together 12 organisations, including Drax, is expected to create as many as 47,800 jobs in the region by 2027. Among these are construction sector jobs for welders, pipefitters, machine installers and technicians. In addition, indirect jobs are predicted to be created across supply chains, from material manufacturing to the logistics of supporting a workforce.

Meeting climate challenges and delivering projects on the scale of Zero Carbon Humber, depends on creating an energy workforce that combines the knowledge of the past with the green energy skills of the future.

Drax’s apprenticeships have readied workers for the energy sector for decades, and will continue to do so as we build a low-carbon future. Options include four-year technical apprenticeships in mechanical, electrical, and control and instrumentation engineering. Getting on-the-job training and practical experience, apprentices receive a nationally recognised qualification, such as a BTEC or an NVQ Level 3, at the end of the programme.

Apprentices at Drax Power Station [2021]

The workforce needed to make low carbon societies a reality will be a diverse one – stretching from apprentices to experienced professionals with a background in traditional or renewable energy. It will also span every aspect of the renewable energy field, from the chemists and biofuel scientists who develop key technologies to the solar panel installers and wind turbine technicians who fit and maintain the necessary equipment.

The skills needed to take on these roles are already plentiful in the UK and around the world. Overcoming challenges on the road to net zero requires refocussing these existing talents, skills, and careers towards a new goal.

Appointment of two new non-executive directors

Sunset behind biomass storage domes at Drax Power Station in North Yorkshire

RNS Number : 8439P
DRAX GROUP PLC
(Symbol: DRX)

The Board of Drax Group plc (“Drax” or “the Company”) is pleased to announce the appointments of Erika Peterman and Kim Keating as Non-Executive Directors with immediate effect.

Both Erika and Kim bring extensive experience gained from more than 20 years working at global organisations, enabling the delivery of change and growth in complex, world leading businesses.

Erika Peterman

Erika is currently Senior Vice President at BASF Corporation where she leads the North American Chemical Intermediates business. Since 2001, Erika has held a number of management and senior executive roles with BASF, covering operations and manufacturing, process engineering, strategy, M&A, sales and marketing, as well as leading a range of their diversity and inclusion initiatives. Erika holds a BSc in chemical engineering and an MBA.

Kim is a senior energy sector executive with broad international experience. She joined the Cahill Group in 2013, one of Canada’s largest multi-disciplinary privately owned construction companies, and from August 2018 to September 2021 served as Chief Operating Officer.  On 1 October 2021, Kim was appointed Senior Adviser for special projects at Cahill. Prior to joining the Cahill Group, Kim held a variety of progressive leadership roles and has made significant engineering and project management contributions to key projects in the global energy sector.

Kim Keating

Kim has led a range of innovative growth initiatives including climate change and renewable energy strategies. Kim is a fellow of the Canadian Academy of Engineering, holds a Batchelor of Civil Engineering degree and an MBA.

Erika will also be a member of the Audit Committee and Kim will be a member of the Remuneration Committee. In addition, both will serve as members of the Nomination Committee.

Commenting on the appointments of Erika and Kim, Philip Cox, Chair of Drax commented,

“I am delighted that Erika and Kim are joining the Board. Their experience in global businesses based in the US and Canada, will strengthen our Board and contribute to the diversity of backgrounds, insights and skills, which reflect the continued growth and international presence of Drax following the acquisition of Pinnacle and the evolution of our Group as a leading global provider of sustainable biomass and renewable energy.”

Pursuant to LR 9.6.13R the Company advises that Kim Keating is a non-executive director and serves on the HSE, and HR & Compensation Committees of TSX listed Major Drilling International. Ms Keating is also a non-executive director and serves on the Compensation Committee and Sustainability Committee of Yamana Gold Inc, which is listed on the Toronto Stock Exchange, the New York Stock Exchange and the London Stock Exchange.

For further information, please contact:

Brett Gladden
Group Company Secretary
+44 (0)7936 362586
[email protected]

The person responsible for release of this announcement is Brett Gladden, Group Company Secretary.