Tag: technology

Forests, net zero and the science behind biomass

Tackling climate change and spurring a global transition to net zero emissions will require collaboration between science and industry. New technologies and decarbonisation methods must be rooted in scientific research and testing.

Drax has almost a decade of experience in using biomass as a renewable source of power. Over that time, our understanding around the effectiveness of bioenergy, its role in improving forest health and ability to deliver negative emissions, has accelerated.

Research from governments and global organisations, such as the UN’s Intergovernmental Panel on Climate Change (IPCC) increasingly highlight sustainably sourced biomass and bioenergy’s role in achieving net zero on a wide scale.

The European Commission has also highlighted biomass’ potential to provide a solution that delivers both renewable energy and healthy, sustainably managed forests.  Frans Timmermans, the executive vice-president of the European Commission in charge of the European Green Deal has emphasised it’s importance in bringing economies to net zero, saying: “without biomass, we’re not going to make it. We need biomass in the mix, but the right biomass in the mix.”

The role of biomass in a sustainable future

Moving away from fossil fuels means building an electricity system that is primarily based on renewables. Supporting wind and solar, by providing electricity at times of low sunlight or wind levels, will require flexible sources of generation, such as biomass, as well as other technologies like increased energy storage.

In the UK, the Climate Change Committee’s (CCC) Sixth Carbon Budget report lays out its Balanced Net Zero Pathway. In this lead scenario, the CCC says that bioenergy can reduce fossil emissions across the whole economy by 2 million tonnes of CO2 or equivalent emissions (MtCO2e) per year by 2035, increasing to 2.5 MtCO2e in 2045.

Foresters in working forest, Mississippi

Foresters in working forest, Mississippi

Biomass is also expected to play a crucial role in supplying biofuels and hydrogen production for sectors of the global economy that will continue to use fuel rather than electricity, such as aviation, shipping and industrial processes. The CCC’s Balanced Net Zero Pathway suggest that enough low-carbon hydrogen and bioenergy will be needed to deliver 425 TWh of non-electric power in 2050 – compared to the 1,000 TWh of power fossil fuels currently provide to industries today.

However, bioenergy can only be considered to be good for the climate if the biomass used comes from sustainably managed sources. Good forest management practises ensure that forests remain sustainable sources of woody biomass and effective carbon sinks.

A report co-authored by IPCC experts examines the scientific literature around the climate effects (principally CO2 abatement) of sourcing biomass for bioenergy from forests managed according to sustainable forest management principles and practices.

The report highlights the dual impact managed forests contribute to climate change mitigation by providing material for forest products, including biomass that replace greenhouse gas (GHG)-intensive fossil fuels, and by storing carbon in forests and in long-lived forest products.

The role of biomass and bioenergy in decarbonising economies goes beyond just replacing fossil fuels. The addition of carbon capture and storage (CCS) to bioenergy to create bioenergy with carbon capture and storage (BECCS) enables renewable power generation while removing carbon from the atmosphere and carbon cycle permanently.

The negative emissions made possible by BECCS are now seen as a fundamental part of many scenarios to limit global warming to 1.5oC above pre-industrial levels.

BECCS and the path to net zero

The IPCC’s special report on limiting global warming to 1.5oC above pre-industrial levels, emphasises that even across a wide range of scenarios for energy systems, all share a substantial reliance on bioenergy – coupled with effective land-use that prevents it contributing to deforestation.

The second chapter of the report deals with pathways that can bring emissions down to zero by the mid-century. Bioenergy use is substantial in 1.5°C pathways with or without CCS due to its multiple roles in decarbonising both electricity generation and other industries that depend on fossil fuels.

However, it’s the negative emissions made possible by BECCS that make biomass  instrumental in multiple net zero scenarios. The IPCC report highlights BECCS alongside the associated afforestation and reforestation (AR), that comes with sustainable forest management, are key components in pathways that limit climate change to 1.5oC.

Graphic showing how BECCS removes carbon from the atmosphere. Click to view/download

There are two key factors that make BECCS and other forms of emissions removals so essential: The first is their ability to neutralise residual emissions from sources that are not reducing their emissions fast enough and those that are difficult or even impossible to fully decarbonise. Aviation and agriculture are two sectors vital to the global economy with hard-to-abate emissions. Negative emissions technologies can remove an equivalent amount of CO2 that these industries produce helping balance emissions and progressing economies towards net zero.

The second reason BECCS and other negative emissions technologies will be so important in the future is in the removal of historic CO2 emissions. What makes CO2 such an important GHG to reduce and remove is that it lasts much longer in the atmosphere than any other. To help reach the Paris Agreement’s goal of limiting temperature rises to below 1.5oC removing historic emissions from the atmosphere will be essential.

In the UK, the  CCC’s 2018 report ‘Biomass in a low-carbon economy’ also points to BECCS as both a crucial source of energy and emissions abatement.

It suggests that power generation from BECCS will increase from 3 TWh per year in 2035 to 45 TWh per year in 2050. It marks a sharp increase from the 19.5 TWh that biomass (without CCS) accounted for across 2020, according to Electric Insights data. It also suggests that BECCS could sequester 1.1 tonnes of CO2 for every tonne of biomass used, providing clear negative emissions.

However, the report makes clear that unlocking the potential of bioenergy and BECCS is only possible when biomass stocks are managed in a sustainable way that, as a minimum requirement, maintains the carbon stocks in plants and soils over time.

With increased attention paid to forest management and land use, there is a growing body of evidence that points to bioenergy as a win-win solution that can decarbonise power and economies, while supporting healthy forests that effectively sequester CO2.

How bioenergy ensures sustainable forests

Biomass used in electricity generation and other industries must come from sustainable sources to offer a renewable, climate beneficial [or low carbon] source of power.

UK legislation on biomass sourcing states that operators must maintain an adequate inventory of the trees in the area (including data on the growth of the trees and on the extraction of wood) to ensure that wood is extracted from the area at a rate that does not exceed its long-term capacity to produce wood. This is designed to ensure that areas where biomass is sourced from retain their productivity and ability to continue sequestering carbon.

Ensuring that forestland remains productive and protected from land-use changes, such as urban creep, where vegetated land is converted into urban, concreted spaces, depends on a healthy market for wood products. Industries such as construction and furniture offer higher prices for higher-quality wood. While low-quality, waste wood, as well as residues from forests and wood-industry by-products, can be bought and used to produce biomass pellets.

A report by Forest 2 Market examined the relationship between demand for wood and forests’ productivity and ability to sequester carbon in the US South, where Drax sources about two-thirds of its biomass.

The report found that increased demand for wood did not displace forests in the US South. Instead, it encouraged landowners to invest in productivity improvements that increased the amount of wood fibre and therefore carbon contained in the region’s forests.

A synthesis report, which examines a broad range of research papers,  published in Forest Ecology and Management in March of 2021, concluded from existing studies that claims of large-scale damage to biodiversity from woody biofuel in the South East US are not supported. The use of these forest residues as an energy source was also found to lead to net GHG greenhouse emissions savings compared to fossil fuels, according to Forest Research.

Importantly the research shows that climate risks are not exacerbated because of biomass sourcing; in fact, the opposite is true with annual wood growth in the US South increasing by 112% between 1953 and 2015.

Delivering a “win-win solution”

The European Commission’s JRC Science for Policy literature review and knowledge synthesis report ‘The use of woody biomass for energy production in the EU’ suggests  a win-win forest bioenergy pathway is possible, that can reduce greenhouse gas emissions in the short term, while at the same time not damaging, or even improving, the condition of forest ecosystems.

However, it also makes clear “lose-lose” situations is also a possible, in which forest ecosystems are damaged without providing carbon emission reductions in policy-relevant timeframes.

Win-win management practices must benefit climate change mitigation and have either a neutral or positive effect on biodiversity. A win-win future would see the afforestation of former arable land with diverse and naturally regenerated forests.

The report also warns of trade-offs between local biodiversity and mitigating carbon emissions, or vice versa. These must be carefully navigated to avoid creating a lose-lose scenario where biodiversity is damaged and natural forests are converted into plantations, while BECCS fails to deliver the necessary negative emissions.

In a future that will depend on science working in collaboration with industries to build a net zero future continued research is key to ensuring biomass can deliver the win-win solution of renewable electricity with negative emissions while supporting healthy forests.

Transporting carbon – How to safely move CO2 from the atmosphere to permanent storage

Key points

  • Carbon capture usage and storage (CCUS) offers a unique opportunity to capture and store the UK’s emissions and help the country reach its climate goals.
  • Carbon dioxide (CO2) can be stored in geological reservoirs under the North Sea, but getting it from source to storage will need a large and safe CO2 transportation network.
  • The UK already has a long history and extensive infrastructure for transporting gas across the country for heating, cooking and power generation.
  • This provides a foundation of knowledge and experience on which to build a network to transport CO2.

Across the length of the UK is an underground network similar to the trainlines and roadways that crisscross the country above ground. These pipes aren’t carrying water or broadband, but gas. Natural gas is a cornerstone of the UK’s energy, powering our heating, cooking and electricity generation. But like the country’s energy network, the need to reduce emissions and meet the UK’s target of net zero emissions by 2050 is set to change this.

Today, this network of pipes takes fossil fuels from underground formations deep beneath the North Sea bed and distributes it around the UK to be burned – producing emissions. A similar system of subterranean pipelines could soon be used to transport captured emissions, such as CO2, away from industrial clusters around factories and power stations, locking them away underground, permanently and safely.

Conveyer system at Drax Power Station transporting sustainable wood pellets

The rise of CCUS technology is the driving force behind CO2 transportation. The process captures CO2 from emissions sources and transports it to sites such as deep natural storage enclaves far below the seabed.

Bioenergy with carbon capture and storage (BECCS) takes this a step further. BECCS uses sustainable biomass to generate renewable electricity. This biomass comes from sources, such as forest residues or agricultural waste products, which remove CO2 from the atmosphere as they grow. Atmospheric COreleased in the combustion of the biomass is then captured, transported and stored at sites such as deep geological formations.

Across the whole BECCS process, CO2 has gone from the atmosphere to being permanently trapped away, reducing the overall amount of CO2 in the atmosphere and delivering what’s known as negative emissions.

BECCS is a crucial technology for reaching net zero emissions by 2050, but how can we ensure the CO2 is safely transported from the emissions source to storage sites?

Moving gases around safely

Moving gases of any kind through pipelines is all about pressure. Gases always travel from areas of high pressure to areas of low pressure. By compressing gas to a high pressure, it allows it to flow to other locations. Compressor stations along a gas pipeline help to maintain right the pressure, while metering stations check pressure levels and look out for leaks.

The greater the pressure difference between two points, the faster gases will flow. In the case of CO2, high absolute pressures also cause it to become what’s known as a supercritical fluid. This means it has the density of a liquid but the viscosity of a gas, properties that make it easier to transport through long pipelines.

Since 1967 when North Sea natural gas first arrived in the UK, our natural gas transmission network has expanded considerably, and is today made up of almost 290,000 km of pipelines that run the length of the country. Along with that physical footprint is an extensive knowledge pool and a set of well-enforced regulations monitoring their operation.

While moving gas through pipelines across the country is by no means new, the idea of CO2 transportation through pipelines is. But it’s not unprecedented, as it has been carried out since the 1980s at scale across North America. In contrast to BECCS, which would transport CO2 to remove and permanently store emissions, most of the CO2 transport in action today is used in oil enhanced recovery – a means of ejecting more fossil fuels from depleted oil wells. However, the principle of moving CO2 safely over long distances remains relevant – there are already 2,500 km of pipelines in the western USA, transporting as much as 50 million tonnes of CO2 a year.

“People might worry when there is something new moving around in the country, but the science community doesn’t have sleepless nights about CO2 pipelines,” says Dr Hannah Chalmers, from the University of Edinburgh. “It wouldn’t explode, like natural gas might, that’s just not how the molecule works. If it’s properly installed and regulated, there’s no reason to be concerned.”

CO2 is not the same as the methane-based natural gas that people use every day. For one, it is a much more stable, inert molecule, meaning it does not react with other molecules, and it doesn’t fuel explosions in the same way natural gas would.

CO2 has long been understood and there is a growing body of research around transporting and storing it in a safe efficient way that can make CCUS and BECCS a catalyst in reducing the UK’s emissions and future-proofing its economy.

Working with CO2 across the UK

Working with CO2 while it is in a supercritical state mean it’s not just easier to move around pipes. In this state CO2 can also be loaded onto ships in very large quantities, as well as injected into rock formations that once trapped oil and gas, or salt-dense water reserves.

Decades of extracting fossil fuels from the North Sea means it is extensively mapped and the rock formations well understood. The expansive layers of porous sandstone that lie beneath offer the UK an estimated 70 billion tonnes of potential CO2 storage space – something a number of industrial clusters on the UK’s east coast are exploring as part of their plans to decarbonise.

Source: CCS Image Library, Global CCS Institute [Click to view/download]

Drax is already running a pilot BECCS project at its power station in North Yorkshire. As part of the Zero Carbon Humber partnership and wider East Coast Cluster, Drax is involved in the development of large scale carbon storage capabilities in the North Sea that can serve the Humber and Teesside industrial clusters. As Drax moves towards its goal of becoming carbon negative by 2030, transporting CO2 safely at scale is a key focus.

“Much of the research and engineering has already been done around the infrastructure side of the project,” explains Richard Gwilliam, Head of Cluster Development at Drax. “Transporting and storing CO2 captured by the BECCS projects is well understood thanks to extensive engineering investigations already completed both onshore and offshore in the Yorkshire region.”

This also includes research and development into pipes of different materials, carrying CO2 at different pressures and temperatures, as well as fracture and safety testing.

The potential for the UK to build on this foundation and progress towards net zero is considerable. However, for it to fully manifest it will need commitment at a national level to building the additional infrastructure required. The results of such a commitment could be far reaching.

In the Humber alone, 20% of economic value comes from energy and emissions-intensive industries, and as many as 360,000 jobs are supported by industries like refining, petrochemicals, manufacturing and power generation. Putting in place the technology and infrastructure to capture, transport and store emissions will protect those industries while helping the UK reach its climate goals.

It’s just a matter of putting the pipes in place.

Go deeper: How do you store CO2 and what happens to it when you do?

What is LNG and how is it cutting global shipping emissions?

Oil tanker, Gas tanker operation at oil and gas terminal.

Shipping is widely considered the most efficient form of cargo transport. As a result, it’s the transportation of choice for around 90% of world trade. But even as the most efficient, it still accounts for roughly 3% of global carbon dioxide (CO2) emissions.

This may not sound like much, but it amounts to 1 billion tonnes of COand other greenhouse gases per year – more than the UK’s total emissions output. In fact, if shipping were a country, it would be the sixth largest producer of greenhouse gas (GHG) emissions. And unless there are drastic changes, emissions related to shipping could increase from between 50% and 250% by 2050.

As well as emitting GHGs that directly contribute towards the climate emergency, big ships powered by fossil fuels such as bunker fuel (also known as heavy fuel oil) release other emissions. These include two that can have indirect impacts – sulphur dioxide (SO2) and nitrogen oxides (NOx). Both impact air quality and can have human health and environmental impacts.

As a result, the International Maritime Organization (IMO) is introducing measures that will actively look to force shipping companies to reduce their emissions. In January 2020 it will bring in new rules that dictate all vessels will need to use fuels with a sulphur content of below 0.5%.

One approach ship owners are taking to meet these targets is to fit ‘scrubbers’– devices which wash exhausts with seawater, turning the sulphur oxides emitted from burning fossil fuel oils into harmless calcium sulphate. But these will only tackle the sulphur problem, and still mean that ships emit CO2.

Another approach is switching to cleaner energy alternatives such as biofuels, batteries or even sails, but the most promising of these based on existing technology is liquefied natural gas, or LNG.

What is LNG?

In its liquid form, natural gas can be used as a fuel to power ships, replacing heavy fuel oil, which is more typically used, emissions-heavy and cheaper. But first it needs to be turned into a liquid.

To do this, raw natural gas is purified to separate out all impurities and liquids. This leaves a mixture of mostly methane and some ethane, which is passed through giant refrigerators that cool it to -162oC, in turn shrinking its volume by 600 times.

The end product is a colourless, transparent, non-toxic liquid that’s much easier to store and transport, and can be used to power specially constructed LNG-ready ships, or by ships retrofitted to run on LNG. As well as being versatile, it has the potential to reduce sulphur oxides and nitrogen oxides by 90 to 95%, while emitting 10 to 20% less COthan heavier fuel alternatives.

The cost of operating a vessel on LNG is around half that of ultra-low sulphur marine diesel (an alternative fuel option for ships aiming to lower their sulphur output), and it’s also future-proofed in a way that other low-sulphur options are not. As emissions standards become stricter in the coming years, vessels using natural gas would still fall below any threshold.

The industry is starting to take notice. Last year 78 vessels were fitted to run on LNG, the highest annual number to date.

One company that has already embraced the switch to LNG is Estonia’s Graanul Invest. Europe’s largest wood pellet producer and a supplier to Drax Power Station, Graanul is preparing to introduce custom-built vessels that run on LNG by 2020.

The new ships will have the capacity to transport around 9,000 tonnes of compressed wood pellets and Graanul estimates that switching to LNG has the potential to lower its COemissions by 25%, to cut NOx emissions by 85%, and to almost completely eliminate SOand particulate matter pollution.  

Is LNG shipping’s only viable option?

LNG might be leading the charge towards cleaner shipping, but it’s not the only solution on the table. Another potential is using advanced sail technology to harness wind, which helps power large cargo ships. More than just an innovative way to upscale a centuries-old method of navigating the seas, it is one that could potentially be retrofitted to cargo ships and significantly reduce emissions.

Drax is currently taking part in a study with the Smart Green Shipping Alliance, Danish dry bulk cargo transporter Ultrabulk and Humphreys Yacht Design, to assess the possibility of retrofitting innovative sail technology onto one of its ships for importing biomass.

Manufacturers are also looking at battery power as a route to lowering emissions. Last year, boats using battery-fitted technology similar to that used by plug-in cars were developed for use in Norway, Belgium and the Netherlands, while Dutch company Port-Liner are currently building two giant all-electric barges – dubbed ‘Tesla ships’ – that will be powered by battery packs and can carry up to 280 containers.

Then there are projects exploring the use of ammonia (which can be produced from air and water using renewable electricity), and hydrogen fuel cell technology. In short, there are many options on the table, but few that can be implemented quickly, and at scale – two things which are needed by the industry. Judged by these criteria, LNG remains the frontrunner.

There are currently just 125 ships worldwide using LNG, but these numbers are expected to increase by between 400 and 600 by 2020. Given that the world fleet boasts more than 60,000 commercial ships, this remains a drop in the ocean, but with the right support it could be the start of a large scale move towards cleaner waterways.

The everyday and future ways you use forest products

Think of the products that come from forests and you might think of the centuries of shipbuilding, construction and cooking made possible by civilisations utilising this plentiful natural resource.

What you might not think of is the complex construction of chemicals and matter that make up the trees of a forest – nor of the countless ways these can be broken down and used. Yet this is the reality of forests. From essential oils to sturdy packaging to powerful adhesives, trees are used to create a range of products that make daily life possible.

And as awareness of the need to reduce plastic consumption grows, research into forest products and how they can replace the less-environmentally friendly objects is growing.

Here we look at five of the most common products used today, and maybe in the future, that owe something to forests.

Adhesives from tall oil

Anyone who has encountered tree sap can attest: trees are made up of some pretty sticky stuff. And it’s because of this that they have long been a source for adhesives production – from glue to cement.

The substance that makes this possible is known as tall oil. Named after the Swedish word Tallolja, meaning pine oil, it is a by-product of pulping coniferous trees.

Tall oil has been produced commercially since the 1930s when the invention of the recovery boiler made it possible to extract it from the Kraft pulping process. However, the resins and waxes tall oil is made up of have a longer history. These are also known as ‘Naval Products’ due to their historic use in ship building and can be tapped directly from living trees.

Today, tall oil is also used in asphalt roofing, as well as medical and cosmetic applications. One of tall oil’s most exciting uses is as BioVerno – a renewable alternative to diesel made in the world’s first commercial-scale biorefinery in Finland.

Disinfectants and detergents from turpentine

Tapping trees has historically been a means of extracting multiple useful substances and one of the most versatile of these is turpentine. This yellowish liquid is produced from distilled tree resin and has a long history of uses.

Turpentine has been used since Roman times as torch or lamp fuel, but its antiseptic properties also means it was often used as medicine. While doctors today would advise against drinking turpentine (as was prescribed in the past), it is still used today in disinfectants, detergents and cleaning products, giving off a fresh, pine-like odour.

Fuels to replace fossils

Biomass pellets from working forests are just one of the ways trees are providing renewable energy. One other form is cellulosic ethanol, a new, second generation of liquid biofuel. Rather than competing with food supply (often a concern in the creation of biodiesels), cellulosic ethanol is made from non-food based materials such as forest and agricultural residues left behind after harvest – wheat straw, – and timber processing wastes including sawdust. It is now being produced at a commercial scale in Europe, the US and Brazil.

Woody biomass can also be converted into a petroleum substitute known as pyrolysis oil or bio-oil. Biomass is transformed into this dark brown liquid by heating it to 500oC in an oxygen-deprived environment and then allowing it to cool. Bio-oil has a much higher energy density than biomass in chip or pellet form and after upgrading can be used as jet fuel or as a petroleum alternative in chemical manufacturing.

Vanilla ice cream and carbon fibre from lignin

Lignin is what gives trees their tough, woody quality, and after cellulose is the world’s second most abundant natural polymer. Polymers are very long molecules made up of many smaller molecules joined end-to-end most often associated with plastic, (which is a synthetic polymer).

Lignin is generally a waste product from the paper pulping process and is often burnt as fuel. However, it can also serve as a vanilla flavouring – a property that may make lignin an important resource in the face of an impending vanilla pod shortage.

Future-looking research, however, aims to unlock much more from the 50 million tonnes of lignin produced every year globally. One of the most promising of these is as an alternative source of a family of organic compound known as phenylpropanoids. These are normally extracted from petroleum and are hugely useful in producing plastics and carbon fibre, as well as drugs and paint. 

Nanocellulose and the future of forest products

Cellulose is already one of the most important products to come from forests thanks to its role in paper production. However, this abundant substance – which is also the primary material in the cell walls of all green plants – holds even more potential.

By shrinking cellulose down to a nano level it can be configured to be very strong while remaining very light. This opens it up as a product with many possibilities, including using it as a source of bioplastics. Some bioplastics – polylactic acid, PHA, PBS and starch blends – are biodegradable alternatives to fossil fuel-based plastics and could potentially help solve some of the world’s most-pressing waste issues.

Not all bio-based plastics are biodegradable, however. The property of biodegradation doesn’t depend on the resource basis of a material – it is linked to its chemical structure. In other words, 100% bio-based plastics may be non-biodegradable, and 100% fossil-based plastics can biodegrade.

Bio-based plastics that are not biodegradable include polyethylene terephthalate, polyurethanes, polyamide, polyethylene. Polyethylenefuranoate or PEF is recyclable, can be manufactured without fossil fuels and while not biodegradable, has the potential to become a more sustainable alternative to the oil-based plastic used to make water bottles.

Cellulose’s combination of strength and light weight has also attracted interest from the auto industry in the ability to help cars become much lighter and therefore more fuel efficient. Its flexible, strong, transparent nature can also make Nanocellulose – an important material in helping bring bendable screens, batteries, cosmetics, paper, pharmaceuticals, optical sensors and devices to market.

The idea of using trees as a source of goods and products in everyday life might sound archaic, but, in reality, we’ve only just tapped the surface of what the chemicals and materials they’re made of can do. Markus Mannström from Finnish renewables company Stora Enso said recently that: “We believe that everything made from fossil-based materials today, can be made from a tree tomorrow.” As research advances, trees and forests will only play a bigger role in a more sustainable future.

6 start-ups, ideas and power plants shaping biomass

Humans have used wood as a source of fuel for over a million years. Modern biomass power, however, is a far cry from human’s early taming of fire and this is down to constant research and innovation. In fact, today it’s one of the most extensively researched areas in energy and environmental studies.

With biomass accounting for 64% of total renewable energy production in the EU in 2015, the development isn’t likely to stop. Ongoing advancements in the field are helping the technology become more sustainable and efficient in reducing emissions.

Here are seven of the projects, businesses, ideas and technologies pushing biomass further into the future:

Torrefaction – supercharging biomass pellets

When it comes to making biomass as efficient as possible it’s all down to each individual pellet. Improving what’s known as the ‘calorific value’ of each pellet increases the overall amount of energy released when they are used in a power station.

One emerging process aiming to improve this is torrefaction, which involves heating biomass to between 250 and 300 degrees Celsius in a low-oxygen environment. This drives out moisture and volatiles from woody feedstocks, straw and other biomass sources before it is turned into a black ‘biocoal’ pellet which has a very high calorific value.

This year, Estonian company Baltania is constructing the first industrial-scale torrefaction plant in the country with the target output of 160,000 tonnes of biocoal pellets per year. If it’s successful, power stations worldwide may be able to get more power from each little pellet.

bio-bean – powered by caffeine

Biofuels don’t just come from forest residues. Every day more than two billion cups of coffee are consumed globally as people get themselves caffeinated for the day ahead. In London alone, this need for daily stimulation results in more than 200,000 tonnes of coffee waste produced every year. More often than not this ends up in landfills.

bio-bean aims to change this by collecting used coffee grounds from cafes, offices and factories and recycling them into biofuels and biochemicals. The company now recycles as much as 50,000 tonnes of coffee grounds annually while one of its products, B20 biodiesel, has been used to power London buses. bio-bean also produces briquettes and pellets, which, like woody biomass, can serve as an alternative to coal.

Biomass gasification – increasing the value of biomass waste

Biogas is often seen as a promising biofuel with fewer emissions than burning fossil fuels or biomass pellets. It’s an area undergoing significant research as it points to another means of creating higher-value products from biomass matter.

The Finnish town of Vaasa is home to the world’s largest gasification plant. The facility is part of a coal plant where co-firing biogas with coal has allowed it to reduce carbon dioxide (CO2) emissions by as much as 230,000 tonnes per year.

As well as reducing emissions, co-firing allows the power plant to use 25% to 40% less coal and when demand is low in the autumn and spring months, the plant runs entirely on biogas. More than that, the forestry residues which are used to produce the biogas are sourced locally from within 100 km of site.

(As part of our transition away from coal, co-firing biomass with that fossil fuel took place at Drax Power Station from 2003 until full unit conversions became a reality in 2013.)

Lynemouth Power Station – powering the move away from coal

After 44-years, the coal-fired Lynemouth Power Station in Northumberland is the latest UK power producer converting to biomass-fuel. Set for completion this year, the plant will supply 390 MW of low-carbon electricity to the National Grid, enough to power 700,000 homes.

Every new power station conversion poses different challenges as well as the opportunity to develop new solutions, but none are as crucial as the conversion of the materials handling equipment from coal to biomass pellets. While coal can sit in the rain for long periods of time and still be used, biomass must be kept dry with storage conditions constantly monitored and adjusted to prevent sudden combustion.

At Lynemouth the handling of 1.4 million tonnes of biomass annually has required the construction of three, 40-metre high concrete storage silos, as well as extensive conveyor systems to unload and transport biomass around the plant. 

BioTrans – two birds with one stone

Energy and food are both undergoing serious changes to make them more sustainable. Danish startup BioTrans is tackling both challenges by using one of the food industry’s key pain points – wastage – to create energy with its biogas systems.

The company installs systems that collect leftover food from restaurants and canteens and stores it in odour-proof tanks before collecting and turning it into biogas for heating and electricity production. More than just utilising this waste stream, the by-product of the gasification process can also be sold as a fertiliser.

Drax and C-Capture – cutting emissions from the source

Carbon capture, usage and storage (CCUS) is one of the most important fields in the energy sector today. The technology’s ability to capture CO2 from the electricity generation process and turn it into a revenue source before it can enter the atmosphere means it’s attracting significant investment and research.

Drax is partnering with C-Capture, a company spun out of the University of Leeds’ chemistry department, to trial a new form of CCUS. The pilot scheme will launch in November and aims to capture a tonne of CO2 per day from one of Drax’s biomass units.

C-Capture’s technology could make the process of capturing and storing CO2 less costly and energy intensive. It does this using a specially developed solvent capable of isolating CO2 before being recycled through the system and capturing more.

If the pilot proves successful, the technology could be implemented at an industrial scale, seeing up to 40% of the CO2 in the flue gases from Drax’s biomass units captured and stored. If the technology tested at Drax leads to the construction of a purpose-built carbon capture unit elsewhere, scientists and engineers at C-Capture believe the CO2 captured could exceed 90%.

Back in North Yorkshire, the eventual goal is negative carbon emissions from Drax Power Station – its biomass units already deliver carbon savings of more than 80% compared to when they used coal. And if a new revenue stream can be developed from the sale of the carbon captured then the power produced from biomass at the power station could become even more cost effective.

With thanks to Biomass UK and The European Biomass Association (AEBIOM).

The wooden buildings of the future

Wooden building with blue sky background

When we think of modern cities and the buildings within them, we often think of the materials they’re constructed from – we think of the concrete jungle.

Since the 19th century, steel, glass and concrete enabled the building of bigger and more elaborate buildings in rapidly-growing cities, and those materials quickly came to define the structures themselves. But today that could be changing.

New technologies and building techniques mean wood, a material humans have used in construction for millennia, is making a comeback and reducing the carbon footprint of our buildings too.

Return of the treehouse

Civilisation has been building structures from wood for longer than you may realise.

Horyu-ji Temple in Nara, Japan

The 32-metre tall Pagoda of Horyu-Ji temple in Japan, was built using wood felled in 594 and still stands today. The Sakyumuni Pagoda of Fogong Temple in China is nearly twice as tall with a height of 67 metres. It was built in 1056.

Today, wood is once again finding favour.

The 30-metre tall Wood Innovation and Design Centre of the University of British Columbia (UNBC) in Canada was completed in October 2014 and is among the first of this new generation of wooden buildings. And they’re only getting bigger.

This year, the completion of the 84-metre, 24-storey HoHo Tower in Vienna will make it the tallest wooden building in the world. But this will be far surpassed if plans for the Oakwood Tower in London are approved. Designed by a private architecture firm and researchers from the University of Cambridge, the proposed building will be 300-metres tall if construction goes ahead, making it London’s second tallest structure after The Shard. And it would be made of wood.

Falling back in love with wood

Wood construction fell out of favour in the 19th century when materials like steel and concrete, became more readily available. But new developments in timber manufacturing are changing this.

Researchers in Graz, Austria, discovered that by gluing strips of wood with their grains at right angles to each other the relative weakness of each piece of wood is compensated. The result is a wood product known as cross-laminated timber (CLT), which is tougher than steel for its weight but is much lighter and can be machined into extremely precise shapes. Think of it as the plywood of the future, allowing construction workers to build bigger, quicker and lighter.

Glued laminated timber, commonly known as glulam, is another technology technique enabling greater use of wood in more complex construction. Manufactured by bonding high-strength timbers with waterproof adhesives, glulam can also be shaped into curves and arches, pushing wood’s usage beyond straight planks and beam.

These dense timbers don’t ignite easily either. They are designed to act more like logs than kindling, and feature an outer layer that is purposefully designed to char when exposed to flame, which in turn insulates the inner wood.

Susceptibility to mould, insect and water damage is indeed a concern of anyone building with wood, but as the centuries-old Pagodas in Japan and China demonstrate, care for wood properly and there’s no real limit to how long you can make it last.

So, wood is sturdy. But so is steel – why change?

Green giant

Construction with concrete and steel produces an enormous carbon footprint. Concrete production on its own accounts for 5% of all our carbon emissions. But building with wood can change that. UNBC’s Innovation and Design centre saved 400 tonnes of carbon by using wood instead of concrete and steel.

On top of that, building with wood ‘freezes’ the carbon captured by the trees as they grow. When trees die naturally in the forest they decompose and release the carbon they have absorbed during growth back in the atmosphere. But wood felled and used to construct a building has captured that carbon for as long as it stands in place. A city of wooden buildings could be a considerable carbon sink.

This can have further ripple effects. The more timber is required for construction, the more it increases the market for wood and the responsibly-managed forests that material comes from. And the more forests that are planted, and managed with proper governance, the more carbon is absorbed from the atmosphere.

According to research from Yale university, a worldwide switch to timber construction would, on its own, cut the building industry’s carbon emissions by 31%.

Granted, that will be a difficult task. But if even a fraction of that can be achieved, it could mean a future of timber buildings and greener cities.

What’s next for bioenergy?

Morehouse BioEnergy in Louisiana

Discussions about our future are closely entwined with those of our power. Today, when we talk about electricity, we talk about climate change, about new fuels and about the sustainability of new technologies. They’re all inexplicably linked, and all hold uncertainties for the future.

But in preparing for what’s to come, it helps to have an idea of what may be waiting for us. Researchers at universities across the UK, including the University of Manchester and Imperial College London, have put their heads together to think about this question, and together with the Supergen Bioenergy programme they’ve created a unique graphic novel on bioenergy that outlines three potential future scenarios.

Based on their imagined views of the future there’s plenty to be optimistic about, but it could just as easily go south.

Future one: Failure to act on climate change

Dams on river

In the first scenario, our energy use and reliance on non-renewable fuels like oil, coal and gas continues to grow until we miss our window of opportunity to invest in renewable technology and infrastructure while it’s affordable.

Neither the beginning nor the end of the supply chain divert from their current trends – energy providers produce electricity and end users consume it as they always have. Governments continue to pursue growth at all costs and industrial users make no efforts to reverse their own rates of power consumption. In response, electricity generation with fossil fuels ramps up, which leads to several problems.

Attempts to secure a dwindling stock of non-renewable fuels lead to clashes over remaining sources as nations vie for energy security. As resources run out, attempts to put in place renewable alternatives are hampered by a lack of development and investment in the intervening years. The damages caused by climate change accelerate and at the same time, mobility for most people drops as fuel becomes more expensive.

Future two: Growing a stable, centralised bioenergy

Rows of saplings ready for planting

A future of dwindling resources and increasing tension isn’t the only way forward. Bioenergy is likely to play a prominent role in the energy mix of the future. In fact, nearly all scenarios where global temperature rise remains within the two degrees Celsius margin (recommended by the Paris Agreement) rely on widespread bioenergy use with carbon capture and storage (BECCS). But how far could the implementation of bioenergy go?

A second scenario sees governments around the world invest significantly in biomass energy systems which then become major, centralised features in global energy networks. This limits the effects of a warming climate, particularly as CCS technology matures and more carbon can be sequestered safely underground.

This has knock-on effects for the rest of the world. Large tracts of land are turned over to forestry to support the need for biomass, creating new jobs for those involved in managing the working forests. In industry, large-scale CCS systems are installed at sizeable factories and manufacturing plants to limit emissions even further.

Future 3: The right mix bioenergy

Modern house with wind turbine

A third scenario takes a combined approach – one in which technology jumps ahead and consumption is controlled. Instead of relying on a few concentrated hubs of BECCS energy, renewables and bioenergy are woven more intimately around our everyday lives. This relies on the advance of a few key technologies.

Widespread adoption of advanced battery technology sees wind and solar implemented at scale, providing the main source of electricity for cities and other large communities. These communities are also responsible for generating biomass fuel from domestic waste products, which includes wood offcuts from timber that makes up a larger proportion of building materials as wooden buildings grow more common.

Whether future three – or any of the above scenarios – will unfold like this is uncertain. These are just three possible futures from an infinite range of scenarios, but they demonstrate just how wide the range of futures is. It’s up to us all – not just governments but businesses, individuals and academics such as those behind this research project too – to to make the best choices to ensure the future we want.

4 of the most exciting emerging technologies in electricity generation

Petri dish with microbe colony

Since the dawn of the industrial age, the world has been powered by a relatively small set of technologies. The 20th century was the age of coal, but this side of 2000, that’s changed.

The need to curb emissions and the rise of renewables, from wind to solar to biomass, has significantly changed how we fuel our power generation.

Today, some of the world’s most interesting and exciting emerging technologies are those designed to generate electricity.

Microbial fuel cells – harnessing the power of bacteria

Bacteria are all around us. Some are harmful, some are beneficial, but all of them ‘breathe’. When they breathe oxidation occurs, which is when something combines with oxygen at a chemical level, and when bacteria do this, electrons are released.

By connecting breathing microbes to a cathode and an anode (the positive and negative rods of a battery), the flow of these released electrons can be harnessed to generate power. This is what’s known as a microbial fuel cell (MFC). MFCs are used largely to generate electricity from waste water, but are expanding into more exotic uses, like powering miniature aquatic robots.

New developments are constantly expanding the power and applications of MFCs. Researchers at Binghamton University, New York found that combining phototropic (light-consuming) and heterotrophic (matter-consuming) bacteria in microbial fuel reactions generates currents 70 times more powerful than in conventional setups.

Building with sun shining through glass windows

Solar – a new dawn

Solar power may not be a new technology, but where it’s going is.

One of the most promising developments in the space is solar voltaic glass, which has the properties of a sheet of window glass but can also generate solar power.

Rather than collecting photons like normal solar does (and which transparent materials by definition can’t do) photovoltaic glass uses salts to absorb energy from non-visible wavelengths and deflects these to conventional solar cells embedded at the edge of each panel.

Or there’s solar PV paint, which contains tiny light sensitive particles coated with conductive materials. When layered over electrodes you’ve got a spray-on power generator.

Nuclear reactor hall in a power plant

Betavoltaics – nothing wasted from nuclear waste

Nuclear material is constantly decaying and in the process emits radioactive particles. This is why extremely radioactive material is so dangerous and why properly storing nuclear waste is so important and so expensive. But this waste can actually be put to good use. Betavoltaic devices use the waste particles produced by low-level radioactive materials to capture electrons and generate electricity.

The output from these devices can be fairly low and decreases over long periods of time, but because of the consistent output of nuclear decay they can be extremely long-lasting. For example, one betavoltaic battery could provide one watt of power continuously for 30 years.

And while they aren’t currently fit to work on a large scale, their longevity (and very compact size) make them ideal power sources for devices such as sensors installed on equipment that needs to be operational for long periods.

Ocean wave crashing at shore

Tidal power – changing tides

A more predictable power source than intermittent renewables like wind and solar, tidal power isn’t new, however its growth and development has typically been restrained by high costs and limited availability. That’s changing. Last year saw the launch of the first of 269 1.5 MW (megawatt) underwater turbines, part of world’s first large scale tidal energy farm in Scotland.

Around the world there are existing tidal power stations – such as the Sihwa Lake Tidal Power Station in South Korea, which has a capacity of 254MW – but the MeyGen array in Scotland will be able to take the potential of the technology further. It’s hoped that when fully operational it will generate 398MW, or enough to power 175,000 homes.

We might not know exactly how the electricity of tomorrow will be generated, but it’s likely some or all of these technologies will play a part. What is clear is that our energy is changing.

This is how you unload a wood chip truck

Truck raising and lowering

A truck arrives at an industrial facility deep in the expanding forestland of the south-eastern USA. It passes through a set of gates, over a massive scale, then onto a metal platform.

The driver steps out and pushes a button on a nearby console. Slowly, the platform beneath the truck tilts and rises. As it does, the truck’s cargo empties into a large container behind it. Two minutes later it’s empty.

This is how you unload a wood fuel truck at Drax Biomass’ compressed wood pellet plants in Louisiana and Mississippi.

What is a tipper?

“Some people call them truck dumpers, but it depends on who you talk to,” says Jim Stemple, Senior Director of Procurement at Drax Biomass. “We just call it the tipper.” Regardless of what it’s called, what the tipper does is easy to explain: it lifts trucks and uses the power of gravity to empty them quickly and efficiently.

The sight of a truck being lifted into the air might be a rare one across the Atlantic, however at industrial facilities in the United States it’s more common. “Tippers are used to unload trucks carrying cargo such as corn, grain, and gravel,” Stemple explains. “Basically anything that can be unloaded just by tipping.”

Both of Drax Biomass’ two operational pellet facilities (a third is currently idle while being upgraded) use tippers to unload the daily deliveries of bark – known in the forestry industry as hog fuel, which is used to heat the plants’ wood chip dryers – sawdust and raw wood chips, which are used to make the compressed wood pellets.

close-up of truck raising and lowering

How does it work?

The tipper uses hydraulic pistons to lift the truck platform at one end while the truck itself rests against a reinforced barrier at the other. To ensure safety, each vehicle must be reinforced at the very end (where the load is emptying from) so they can hold the weight of the truck above it as it tips.

Each tipper can lift up to 60 tonnes and can accommodate vehicles over 50 feet long. Once tipped far enough (each platform tips to a roughly 60-degree angle), the renewable fuel begins to unload and a diverter guides it to one of two places depending on what it will be used for.

“One way takes it to the chip and sawdust piles – which then goes through the pelleting process of the hammer mills, the dryer and the pellet mill,” says Stemple. “The other way takes it to the fuel pile, which goes to the furnace.”

The furnace heats the dryer which ensures wood chips have a moisture level between 11.5% and 12% before they go through the pelleting process.

“If everything goes right you can tip four to five trucks an hour,” says Stemple. From full and tipping to empty and exiting takes only a few minutes before the trucks are on the road to pick up another load.

Efficiency benefits

Using the power of gravity to unload a truck might seem a rudimentary approach, but it’s also an efficient one. Firstly, there’s the speed it allows. Multiple trucks can arrive and unload every hour. And because cargo is delivered straight into the system, there’s no time lost between unloading the wood from truck to container to system.

Secondly, for the truck owners, the benefits are they don’t need to carry out costly hydraulic maintenance on their trucks. Instead, it’s just the tipper – one piece of equipment – which is maintained to keep operations on track.

However, there is one thing drivers need to be wary of: what they leave in their driver cabins. Open coffee cups, food containers – anything not firmly secured – all quickly become potential hazards once the tipper comes into play.

“I guess leaving something like that in the cab only happens once,” Stemple says. “The first time a trucker has to clean out a mess from his cab is probably the last time.”