Tag: sustainability

The sustainable development goals

In 2015, the United Nations launched 17 Sustainable Development Goals (SDGs) to end poverty, protect the planet and ensure prosperity for all by 2030. At Drax, improved performance has guided our business purpose for over four decades. We are committed to play our part in achieving the UN SDGs through our operations, the services we deliver to our customers and in partnership with others.

Drax Group has the most significant impact on the Global Goals listed below:

Affordable and clean energy

We provide 6% of the UK’s electricity and play a vital role in helping change the way energy is generated, supplied and used as the UK moves to a low-carbon future. In 2017, 65% of the electricity we produced came from biomass, rather than coal. Our B2B Energy Supply businesses encourage customers to be more sustainable, including through the provision of reliable, renewable electricity at no premium compared to fossil fuel-generated electricity.

Customers

Low Carbon

Decent work and economic growth

We directly employ over 2,500 people in the United Kingdom and United States and their health, safety and wellbeing remains our highest priority. Our B2B Energy Supply business offers energy solutions and value-added services to industrial, corporate and small business customers across the UK.

Society

Industry, innovation and infrastructure

We develop innovative energy solutions to enable the flexible generation and lower-carbon energy supply needed for a low-carbon future. We also innovate to improve the efficiency of our operations and increase our production capacity, notably in our biomass supply chain. Our B2B Energy Supply business offers “intelligent sustainability” and innovative products and services to our customers.

Customers

Low Carbon

Climate action

Our electricity generation activities are a source of carbon emissions. We are committed to helping a low-carbon future by moving away from coal and towards renewable and cleaner fuels, including biomass electricity generation and our planned rapid-response gas plants. We also help our business customers to be more sustainable through the supply of renewable electricity.

Low Carbon

Life on land

We source sustainable biomass for our electricity generation activities and engage proactively with our supply chain to ensure that the forests we source from are responsibly managed. We work closely with our suppliers and through tough screening and audits ensure that we never cause deforestation, forest decline or source from areas officially protected from forestry activities or where endangered species may be harmed.

Low Carbon

Sourcing

Environment

Partnerships for the goals

We engage with stakeholders regularly and build relationships with partners to raise our standards and maximise what can be achieved. Our collaborations align closely with our business, purpose and strategy.

Stakeholder Engagement

Society

Commitment to the UNGC

In 2017, we initiated a process which will allow us to participate in the United Nations Global Compact (UNGC) a global sustainability initiative and we will evidence progress next year. We made progress in preparing for participation outlined in the following sections:

Human rights

We seek to safeguard fundamental human rights for our employees, contractors and anyone that is affected by our business. We ensure that our suppliers apply high standards to protect human rights.

Modern Slavery Statement

Labour

We have policies and standards in place to safeguard our employees and contractors. We respect our employees’ rights in areas such as freedom of association and collective bargaining and we do not tolerate forced, compulsory or child labour. We are committed to providing a safe and healthy workplace for all our people and we strive to prevent discrimination and promote diversity in our workforce.

People

Environment

As a generator and supplier of electricity, we take our responsibility to protect the environment very seriously. We have transformed our generation business and are seeking to further reduce our environmental impact. We focus on reducing our emissions to air, discharges to water, disposal of waste, and on protecting biodiversity and using natural resources responsibly. We have invested heavily in lower-carbon technology as we continue to transition away from coal to renewable and lower-carbon fuels.

Customers

Low Carbon

Environment

Anti-corruption

We do not tolerate any forms of bribery, corruption or improper business conduct. Our “Doing the Right Thing” framework sets out the ethical principles our people must uphold, which is supported by the Group corporate crime policy. Our strict ethical business principles apply to all employees and contractors and we expect the same high standards from anyone we do business with.

Ethics and Integrity

Collaborating for biodiversity protection and enhancement

Drax Biomass conducts regional risk assessments with extensive reviews of existing public and private datasets to identify high conservation value forests. This regional information is then augmented by county-level Natural Heritage data.

In 2017, Drax Biomass contracted with Nature Serve to package this regional- and county-level data into a format that would facilitate a rapid risk assessment for all in-woods fibre. This operational risk assessment procedure, combined with formal conservation commitments such as the Atchafalaya Basin Keeper agreement, reflect a comprehensive strategy to protect biodiversity.

Drax Biomass is looking forward to actively contributing to regional conservation enhancement efforts in 2018 and beyond.

A partnership formed with the American Forest Foundation (AFF) in 2017 is paving the way. The AFF is a publicly supported not-for-profit organization established to conduct charitable, educational, research and scientific programmes aimed at the responsible use and conservation of renewable resources. Our partnership with the AFF is aimed at improving habitat for at-risk southern wildlife species through active forest management. With open-canopy pine habitat identified as a conservation need, the market that Drax Biomass provides for small-diameter forest thinning material can directly benefit the regional biodiversity.

In addition to efforts around our own facilities, Drax Biomass employees have been contributing to a collaborative effort run by the Sustainable Biomass Program (SBP) to provide better information on how to assess whether or not there are forests with high conservation values in a catchment, and what to do about them. SBP expects to publish the guidance from this workgroup in early 2018.

People strategy

Our people strategy: One Drax

Following extensive consultation with employees, we developed our people strategy to 2020 – One Drax. It has been designed to address the key issues that were raised by employees in our 2016 employee survey, such as the need for clearer learning and development programmes and more effective internal communications. The strategy focuses on valuing our people, driving business performance and developing talent to deliver our strategic and operational objectives.

We launched the five aspects of the strategy: my career, my performance, our behaviours, our reward, my recognition. In 2018, we will focus on all of these aspects and, in particular, our reward, my recognition and my career.

Behavioural framework

We have developed a number of HR programmes in line with our people strategy. The foundation of this is a new behavioural framework that identifies positive behaviours reflecting our Company values: honest, energised, achieving, together. The behaviours are integrated into all areas of our people management processes at Drax Group. The HR team consulted with one in five employees across the business, including senior leaders and union representatives, to develop the framework.

In 2018 we will further embed the behavioural framework and our Company values into our culture by developing an online tool for employees to evaluate how they demonstrate the behaviours.

Developing our people / apprenticeships

At Drax Power, we have a proud history of apprenticeships, with the majority remaining to work at Drax and progressing through the Company.


Mick Moore joined Drax on 7 September 1976 as a craft apprentice.

On completion of his apprenticeship, Mick continued to further his education and completed an HNC in Electrical & Electronic Engineering. After a 10-year break he resumed his further education, graduating from Humberside & Lincolnshire University with a degree in Electronics & Control Engineering, achieving Chartered Engineering status with the Institute of Electrical Engineers in 1999.

Having worked at Drax for 41 years, Mick’s career has included roles such as Instrument Mechanic, various engineering grades from Assistant Engineer to Process Control Engineer & Maintenance Section Head. Mick is now the Electrical, Control & Instrumentation Engineering Section Head for Drax Power and is currently responsible for a team of 51 people.


 

The Sustainable Biomass Program

In 2013, Drax co-founded the SBP together with six other energy companies.

SBP builds upon existing forest certification programmes, such as the Sustainable Forest Initiative (SFI), Forest Stewardship Council (FSC) and the Programme for the Endorsement of Forest Certification (PEFC). These evidence sustainable forest management practices but do not yet encompass regulatory requirements for reporting greenhouse gas (GHG) emissions. This is a critical gap for biomass generators, who are obligated to report GHG emissions to European regulators.

There is also limited uptake of forest-level certification schemes in some key forest source areas. SBP is working to address these challenges.

SBP certification provides assurance that woody biomass is supplied from legal and sustainable sources and that all regulatory requirements for the users of biomass for energy production are met. The tool is a unique certification scheme designed for woody biomass, mostly in the form of wood pellets and wood chips, used in industrial, large-scale energy production.

SBP certification is achieved via a rigorous assessment of wood pellet and wood chip producers and biomass traders, carried out by independent, third party certification bodies and scrutinised by an independent technical committee.

7 principles of a sustainable forest biomass policy

Biomass is playing an important role in moving the UK away from coal. At Drax Power Station, in the form of compressed wood pellets, biomass is already supplying roughly 17% of Great Britain’s renewable power.

But more than just being a low carbon replacement for fossil fuel generation, it is also crucial in maintaining the stability of the power network. Among renewable sources of power, biomass is unique in being able to provide the same range of ancillary services that can be provided by coal power stations – such as frequency control and inertia. This inherrent flexibility is vital in maintaining stability on Britain’s high voltage transmission system. Wood pellets can also reliably generate power, helping to fill in the gaps left by intermittent renewables when the wind doesn’t blow and the sun doesn’t shine and avoiding reliance on diesel, coal and gas.

However, for the UK and the wider global environment to reap the maximum benefits from biomass, it must be produced sustainably. More than this, its supply chain must be low in emissions so that clear savings can be made versus power generation with fossil fuels.

To ensure this, the use of biomass is regulated in the UK under EU Timber Regulations and the Renewables Obligation (RO). But further guidelines are set to be introduced as part of the European Parliament’s update to the Renewable Energy Directive (RED), which will specify criteria for all biomass.

There is a clear need for this, but for these to be truly successful they need to be based on a set of robust key principles. A new report by Drax outlines seven of these which can ensure sustainable biomass usage in the future.

1. Forest biomass for bioenergy should be sourced from sustainable forests

The sustainability of the forests from which biomass is sourced is key to ensuring its usage has a positive impact on the environmental, social and economic health of that supply region.

For example, a properly managed forest can boost carbon stock as the younger, faster growing trees that are replanted after felling absorb more CO2 than older, over-mature trees.  Thinning operations also increase the growth of the biggest and best trees, ensuring more carbon is stored in longer term solid wood products.

Generators should be able to demonstrate they are avoiding biomass sourced from higher-risk areas where extracting biomass could cause long-term carbon stock decreases in soils or ecosystems, as well as other factors such as biodiversity loss, soil erosion or depletion of water sources.

2. Bioenergy from forest biomass should not be produced from high-risk feedstocks

Feedstocks, the raw materials turned into biomass pellets, must come from sustainable sources and avoid protected and sensitive sites that could be considered a risk.

In 2016 around 40% of all feedstock supplied to Drax originated as a sawmill residue. Processes such as thinning also serve as a source of biomass feedstock, while also benefitting the overall health and quality of the forest. Thinning a semi mature stand of trees allows the forest owner to maximise the production of higher value saw-timber trees, storing more carbon and generating more stable revenue streams. Having a variety of wood products markets from saw logs through to biomass incentivises land owners to maintain healthy forests and reduces the risk of conversion of forest to agriculture or urban development.

3. Carbon savings and emissions should be properly accounted

To understand the effectiveness of biomass sustainability policy, carbon savings need to be measured.

Factors such as fossil fuel substitution and the emissions associated with harvesting, processing and transporting biomass are relatively straightforward to measure.

4. Bioenergy should be limited to what can be sustainably supplied

Unlike coal or oil, which will eventually run out, more trees can be planted, grown and harvested.

That said, there is a natural limit to the amount of biomass available on the planet, and so it should not be considered an infinite resource. This is why it’s crucial biomass is sourced from sustainable forests managed following set guidelines. In short, to ensure biomass truly is sustainable, it is essential that working forests are actively managed and maintain or increase productivity.

5. Support should be given to all technologies that achieve significant carbon savings

One of the major advantages of biomass over other renewable sources is its potential to help the UK rapidly adapt to meet the EU target of achieving 27% of final energy consumption from renewables.

The fastest way for biomass to make an impact to the UK’s carbon emissions is through converting coal power stations to biomass, as is the case at Drax Power Station.

This repurposing of existing facilities not only offers rapid adoption of renewable energy, but also the ability to provide vital ancillary services other renewable sources can’t.

Quickly deploying biomass solutions in this manner will serve to help it become an established part of the energy system as it continues to decarbonise.

6. The efficient use of raw materials is supported by encouraging buoyant forest biomass markets

Globally, there are substantial amounts of forest residue and forestry industry by-products that currently go unused.

Biomass should be sourced from regions where the largest surpluses exist and the forest carbon balance can be maintained. To enable this to function effectively on a global scale, trade restrictions should be avoided.

Pelletisation offers one of the most efficient ways for this raw material to be used by making it safe, cost-efficient and low-carbon to transport around the world.

These principals are tried and tested by Drax and known to protect forests and ecosystems, as well as optimise supply chains to ensure carbon emissions are kept to a minimum. Ultimately, Drax’s experience in sustainably using biomass serve as a guide for other producers and governments to quickly decarbonise energy systems.

7. The sustainability of forest biomass should be independently verified

One of the best ways to guarantee biomass is sourced sustainably is by introducing third-parties and official guidelines that generators and suppliers can work with.

In Europe, forest level management certification schemes can act as an effective indicator that forests are managed in accordance with the guidelines laid out by Forest Europe. Outside of Europe, where Drax sources most of its biomass, independent, third part auditors can ensure the UK’s stringent criteria are being met on the ground.

Read the full report: The 7 Principles of a Sustainable Forest Biomass Policy – Proven to Work

5 more things you never knew about forests

Forests have long been places of mystery for people. It’s within a dark wood that Virgil and then Dante locate the gates to the underworld, while Shakespeare’s magical Midsummer Night’s Dream plays out in a mystical forest near Athens.

And while fairies and portals may be the stuff of fantasy, the forests that inspired them remain a source of mystery to this day.

Here are five more things you might not know about forests.

The forest sector employs more than 50 million people around the world

Employment is one of the major driving forces of global urbanisation as waves of people in both developed and less developed countries head to cities in search of better wages and living standards. But outside of cities, industries still thrive – particularly forestry, which officially employs 13.2 million people around the world.

The World Bank even suggests that by counting people in informal forestry employment and those who earn a living indirectly through forests, timber or fuel, the number of people professionally involved in forestry is closer to 54 million worldwide.

Forestry’s total contribution to global GDP is also sizeable. It currently adds an impressive $120 billion directly – a number expected to grow by as much as 50% over the next 10 to 15 years. Even more impressive is the contribution of the wider timber and wood product sector, which generates as much as $600 billion – 1% of global GDP, according to the World Bank.

We will soon be able weigh the world’s forests

 We know forests blanket about 30% of the land on earth, but what about calculating the mass and volume of all those trees? That’s a different task entirely, but one which could offer important insights for sustainable forestry.

In 2021 the European Space Agency (ESA) will launch Earth Explorer Biomass, the first satellite to carry a P-band radar, which is capable of penetrating the forest canopies and capturing data on the density of tree trunks and branches. Essentially, it will be able to weigh the world’s forests.

Over the course of its five-year mission, it will produce 3D maps every six months, giving scientists data on forest density across eight growth cycles. The result will be a much clearer image of the amount of biomass present around the earth’s different forested areas and how it is changing over time as a result of carbon dioxide (CO2) absorption.

Forests are an energy source that clean up after themselves

For all the IKEA furniture made from wood, 50% of the world’s total wood production is still used for energy with some 2.4 billion people globally using it for heating, cooking and electricity generation.

The world’s forests have an energy content about 10 times that of the annual primary energy consumption, making it a hugely useful resource in helping meet energy demand – if it is managed and used in a sustainable way.

As with other energy sources that are combusted, wood releases CO2, . However, if this fuel is drawn from a responsibly managed forest or a sustainable system of growing forests, its carbon emissions are offset by new tree plantings, which absorb carbon as they grow. This means the only emissions produced are those that come from transporting the wood itself.

The US Food and Agriculture Organization predicts that by 2030, forestry mitigation – with the help of carbon pricing – could contribute to CO2 reductions of 0.2 to 13.8 gigatonnes a year. 

 

Forests improve drinking water

Forests provide what’s known as natural infrastructure, which not only regulate water levels but also improve the quality of drinking water. Root systems and organic material like the leaves and twigs that make up the forest floor absorb water, reducing runoff and erosion. They also play a part in absorbing nutrients that are harmful to water quality.

The forest canopy further helps this process by releasing water vapour, helping regulate rainfall and providing protection against aerial drifts of pesticides, which can filter back into water systems.

Forests can suck up a third of CO2 emissions

While governments around the world look to shift to cleaner, renewable energy sources and cut emissions, forests have been silently tackling climate change for centuries. Over the past few decades, the world’s forests have absorbed as much as 30% of annual global human generated CO2 emissions. In fact, their ability to deal with fossil fuel-derived carbon emissions is even written into the Paris Climate Agreement.

While natural forests can contribute massively to sequestering (absorbing and storing) greenhouse gases, managed forests can play an even more powerful role.

Younger trees absorb more CO2 to fuel their rapid growth compared to older trees with stored carbon reserves. Managed forests, with regular thinning and replanting of trees, ensure there are plentiful numbers of these carbon-hungry young trees around the world.

Read the original 5 things you never knew about forests here.

What is a working forest?

An illustration of a working forest

For centuries, civilizations have relied on forests and forest products. Forests provided fuel, food and construction materials, and there were plenty of them.

But when, in 18th century Europe, the needs of growing industrialisation sent development into overdrive, a problem arose: forests were struggling to meet demand.

In Germany, the problem was acute. The growing steel industry had increased demand for wood to power its smelters and for wood used in mining operations. Large areas of forestland were stripped to meet industry’s needs and overall supply was quickly decreasing.

No one was more acutely aware of the challenge than Hans Carl von Carlowitz, who at the time was the head of the Saxon mining administration.

So, in 1713 he published ‘Silvicultura Oeconomica’, a book which advocated the conservation and management of German forests so they could provide for industries in the long term. Although he drew on existing knowledge from around Europe, it was the first time an important term was used: Nachhaltigkeit, the German word for sustainability.

Carlowitz explained this new term: “Conservation and growing of wood is to be undertaken in order to have a continuing, stable and sustained use, as this is an indispensable cause, without which the country in its essence cannot remain.”

It was arguably the start of the scientific approach to forestry, and although our needs of forests have changed (as have the words we use to describe them – working forest, plantation forest and managed forest all refer to largely the same thing), that same principle is at the heart of how a modern working forest functions: to ensure what exists and is useful today will still be there tomorrow.

This approach relies on responsible forest management, which sets out a few key principles on how a forest should be managed to sustain its life.

Providing room to breathe

Working forests are commonly managed to produced sawlogs – high value wood that can be sawn to make timber for construction or furniture. For a forester to optimise the quality and quantity of sawlogs, regular thinning is required. Thinning is the process of periodically felling a proportion of the forest to aid its overall health and vigour. This means there are fewer trees fighting for the same resources (water, sunshine, soil). More than that, thinning can promote diversity by providing more light and space for other flora.

Thinning can occur several times in a forest’s cycle. It can be used to increase the size and quality of the remaining trees and also to encourage new seedlings to establish in place of the harvested trees when managing for continuous forest cover.

Nothing should be wasted

The roundwood produced by thinning is often too small to be sold as sawlogs, but that doesn’t mean it’s worthless. It can be sold to the pulp industry to make paper, or for particleboard or to the biomass industry to make compressed wood pellets, which can be used to fuel power generation – as is done at Drax Power Station. These industries also provide a market for the lower grade roundwood removed when the more mature trees are finally harvested.

In areas where there was no robust market for this low grade wood, it would often be left on site and become a fire risk or a haven for pest and disease attack. Too much low grade material left on site can also inhibit the regrowth of the next tree crop. So markets for this material are important for the health of the forest and the value of the land to the forest owner. Also in the Baltic countries markets for pulpwood are limited and the energy sector provides a valuable opportunity to clear the site for replanting and provide additional revenue to the forest owner.

This process of utilising all parts of the forest is essential for a healthy working forest. On the one hand, the revenue can cover the cost of thinning. This husbandry enhances the quality of the final tree crop and ensures that money is available to invest in future planting and regeneration, ensuring the forest area is consistently maintained and improved.

Red Pine, Pinus resinosa - thinned plantation with natural seedlings

Young regeneration in a shelterwood system, demonstrating the continuous forest lifecycle

The carbon benefits of a working forest

Rather than diminishing it, actively managing a forest helps its ability to sequester – or absorb and store – more carbon.

Carbon sequestration is directly related to the growth rate of a tree – a young, growing tree absorbs more carbon dioxide (CO2) from the atmosphere than an older one. Older trees will have more carbon stored (after a ‘childhood’ spent absorbing it), but if these are not harvested they are more susceptible to fire damage, pests and diseases and their carbon absorption plateaus.

In an actively managed forest, older trees ready for sawlog production can be harvested and replaced with vigorously growing young trees and in the process maximise the CO2 absorption potential of the forest.

The by-products of this process – the low grade wood and thinnings – can be used for the pulp and biomass industry, which both aids the health of the remaining forest, and provides revenue for the forester to invest in the long term life of his or her forest.

Three centuries of sustainability

In the 300 years since Carlowitz published his book on sustainability a lot has changed. And while it’s unlikely he foresaw forests providing fuel for renewable electricity and renewable heat, the approach remains as relevant.

What is a working forest? It is one that is as productive and healthy tomorrow as it is today. That we’re using the same resource today as we were 300 years ago is evidence to suggest it’s a practice that works.

How space tech helps forests

Satellite view of the Earth's forests

Can you count the number of trees in the world? Accurately, no – there are just too many, spread out over too vast an area. But if we could, what would we gain? For one, we would get a clearer picture of what’s happening in our planet’s forests.

They’re a hugely important part of our lives – not only for the resource they provide, but for their role in absorbing carbon dioxide (CO2). So properly understanding their scale and what is happening to them – whether increasing or decreasing – and designing strategies to manage this change is hugely important.

The trouble is, they exist on such a vast scale that we traditionally haven’t been able to accurately monitor them en masse. Thanks to space technologies, that’s changing.

A working forest

The view from up there

As far back as World War II, aerial imaging was being used to monitor the environment. In addition to using regular film cameras mounted to aeroplanes to follow troops on the ground, infrared film was used to identify green vegetation and distinguish it from camouflage nets.

As satellite and remote sensing technology developed through the 20th century, so too did our understanding of our planet. Satellites were used to map the weather, monitor the sea, and to create topological maps of the earth, but they weren’t used to track the Earth’s forests in any real detail.

But in 2021 the European Space Agency (ESA) will launch Biomass, a satellite that will map the world’s forests in unprecedented detail using the first ever P-band radar to be placed in Earth orbit. This synthetic aperture radar penetrates the forest canopy to capture data on the density of tree trunks and branches. It won’t just be able to track how much land a forest covers, but how much wood exists in it. In short, the Biomass will be able to ‘weigh’ the world’s forests.

Over the course of its five-year mission, it will produce 3D maps every six months, giving scientists data on forest density across eight growth cycles.

The satellite is part of ESA’s Earth Explorers programme, which operates a number of satellites using innovative sensor technology to answer environmental questions. And it’s not the only entity carrying out research of this sort.

California-based firm Planet has 149 micro-satellites measuring just 10cm x 30cm in orbit around the Earth, each of which beams back around three terabytes of data every day. To put it another way, each satellite photographs about 2.5 million square kilometres of the Earth’s surface on a daily basis.

The aim of capturing this information is to provide organisations with data to help them answer the question: what is changing on Earth? When it comes to forests, this includes identifying things like illegal logging and forest fires, but the overall aim is to create a searchable, expansive view of the world that enables people to generate useful insights.

Rocket flying over the earth

Keeping the world green

All this data is not only vital for developing our understanding of how the world is changing, it is vital for the development of responsible, sustainable forestry practices.

From 2005 to 2015, the UN rolled out the REDD programme (Reducing Emissions from Deforestation and forest Degradation), which, among other functions, allows countries to earn the right to offset CO2 emissions – for example through forestry management practices. Sophisticated satellite measurement techniques not only let governments know the rate of deforestation or afforestation in their respective countries, it can also help them monitor, highlight and encourage responsible forestry.

Satellite technology is increasingly growing the level of visibility we have of our planet. But more than just a clearer view on what is happening, it allows us the opportunity to see why and how it is happening. And it’s with this information that real differences in our future can be made.