Tag: decarbonisation

Under lockdown, every day is a Sunday

empty UK motorway in England at sunset with no traffic

On March 23rd the UK took an unprecedented move to tackle the coronavirus. Most business that had not already closed moved online, with millions of people now working from home. This had a huge impact on electricity demand: consumption on weekdays fell by 13% to its lowest levels since 1982 – a time when there were 10 million fewer people in the country, and GDP was a third lower than today.

Other regions have seen a similar collapse in electricity demand. Spain, Italy and France have all seen electricity demand fall by 10-15% according to analysis by Ember. Across the Atlantic, New York City has seen similar reductions.

Demand has fallen for a simple reason: with schools and workplaces now closed or running with a greatly reduced staff – machinery, computers, lights and heaters are not drawing power. Electric rail, tram and tube systems are also running a reduced service. On the contrary, with more people at home, household electricity consumption has increased. Octopus Energy estimate that during social distancing (before the stricter lockdown came into effect) homes were consuming up to a third more electricity, adding £20 per month to the typical bill.

The impact of lockdown on Britain’s electricity demand is much like living through a month of Sundays. The average profile for a March weekend day in previous years looks very similar to the daily profile for weekdays since lockdown begun – both in the amount of electricity consumed and the structure. Post-lockdown weekends have even lower demand, tracking 11% below weekday demand.

People no longer have to get up at the crack of dawn for work. On a typical weekday morning, demand would rise by 10 GW over two hours from 5:30 to 7:30 AM. Now it takes more than twice as long – until midday – for this rise to occur. At the other end of the day, there would normally be a small peak in demand around 8 PM from people gathering in pubs and restaurants up and down the country. Both on weekdays and weekends, demand begins falling earlier in the evening as the sofa has become the only available social venue.

urban street cafe empty without visitors

With lower demand comes lower power prices. Wholesale electricity prices are typically 7% lower on Sundays than on weekdays for this reason. March saw the lowest monthly-average power price in 12 years, down one-third on this month last year. Prices were already heading downwards because of the falling price of gas, but the lockdown has amplified this, and negative prices have become commonplace during the middle of the day. There was not a visible impact on carbon emissions during the first quarter of the year, as only the last week of March was affected. However, as lockdown continued into April and May, emissions from power production in Britain have fallen by 35% on the same period last year. The effect is slightly stronger across Europe, with carbon emissions falling almost 40% as dirtier coal and lignite power stations are being turned down.

Will some of these effects persist after lockdown restrictions are eased? It is too early to tell, as it depends on what long-lasting economic and behavioural changes occur. Electricity demand is linked with the country’s GDP, which is set to face the largest downturn in three centuries. Whether the economy bounces back, or is afflicted with a lasting depression will be key to future electricity demand. It will also depend on behavioural shifts. People are of course craving their lost freedoms, many may appreciate not going back to a lengthy daily commute – and the rise of video conferencing and collaboration apps has shown that remote working may finally have come of age. With even a small share of the population continuing to work from home on some days, there could be a lasting impact on electricity demand for years to come.


Read full Report (PDF)   |  Read full Report   |   Read press release


How do you store CO2 and what happens to it when you do?

Sunrise over Saltwick Bay, Whitby, North Yorkshire

The North Sea has long shaped British trade. It’s also been instrumental in how the country is powered, historically providing an abundant source of oil and natural gas. However, this cold fringe off the North Atlantic could also play a vital role in decarbonising the UK’s economy – not because of its full oil and gas reservoirs, but thanks to its empty ones.

In an effort to limit or reduce the amount of carbon dioxide (CO2) in the atmosphere, countries around the world are rushing towards large scale carbon capture usage and storage projects (CCUS). In this process, CO2 is captured from sources, such as energy production and manufacturing, or directly removed from the air, and reused or stored permanently – for example, underground in disused oil and gas reservoirs or other suitable geological formations.

CCUS transport overview graphic

Source: CCS Image Library, Global CCS Institute [Click to view/download]

The International Energy Agency estimates that 100 billion tonnes of CO2 must be stored by 2060 to limit temperature rise to 2 degrees Celsius. Yet the Global CCS Institute reports that, as of 2019, the projects currently in operation or under construction had the capacity to capture and store only 40 million tonnes of CO2 per year.

It’s clear the global capacity for CCUS must accelerate rapidly in the coming decade, but it raises the questions: where can these millions of tonnes of CO2 be stored, and what happens to it once it is?

Where can you store CO2?

The most well-developed approach to storing CO2 is injecting it underground into naturally occurring, porous rock formations such as former natural gas or oil reservoirs, coal beds that can’t be mined, or saline aquifers. These are deep geological formations with deposits of very salty water present in the rock’s pores and most commonly found under the ocean. The North Sea and the area off the US Gulf Coast contain several saline aquifers.

Once CO2 has been captured using CCUS technology, it’s pressurised and turned into a liquid-like form known as ‘supercritical CO2’. From there it’s transported via pipeline and injected into the rocks found in the formations deep below the earth’s surface. This is a process called geological sequestration.

CCUS storage overview graphic

Source: CCS Image Library, Global CCS Institute [Click to view/download]

But while pumping CO2 into the ground is one thing, ensuring it stays there and isn’t released into the atmosphere is another. Fortunately, there are several ways to ensure CO2 is stored safely and securely.

Keeping the lid on CO2 stored underground

Put simply, the most straightforward way underground reservoirs store CO2 is through the solid impermeable rock that typically surrounds them. Once CO2 is injected into a reservoir, it slowly moves upwards through the reservoir until it meets this layer of impermeable rock, which acts like a lid the CO2 cannot pass through. This is what’s referred to as ‘structural storage’ and is the same mechanism that has kept oil and gas locked underground for millions of years.

White chalk stone

White chalk stone

Over time, the CO2 trapped in reservoirs will often begin to chemically react with the minerals of the surrounding rock. The elements bind to create solid, chalky minerals, essentially locking the CO2 into the rock in a process called ‘mineral storage’.

In the case of saline aquifers, as well as structural and mineral storage, the CO2 can dissolve into the salty water in a process called ‘dissolution storage’. Here, the dissolved CO2 slowly descends to the bottom of the aquifer.

In any given reservoir, each (or all) of these processes work to store CO2 indefinitely. And while there remains some possibility of CO2 leakage from a site, research suggests it will be minimal. One study, published in the journal Nature, suggests more than 98% of injected CO2 will remain stored for over 10,000 years.

Storage for the net zero future

In the United States, industrial scale storage is in action in Texas, Wyoming, Oklahoma and Illinois, and there are projects in progress across the United Arab Emirates, Australia, Algeria and Canada. However, there is still a long way to go for CCUS to reach the scale it needed to limit the effects of climate change.

Research has shown that globally, there is an abundance of CO2 storage sites, which could support widespread CCUS adoption. A report compiled by researchers at Imperial College London and E4tech and published by Drax details an estimated 70 billion tonnes of storage capacity in the UK alone. The US, on the other hand, has an estimated storage capacity of 10 trillion tonnes.

It’s clear the capacity for storage is present, it now remains the task of governments and companies to ramp up CCUS projects to begin to reach the scale necessary.  

In the UK, Drax Power Station is piloting bioenergy carbon capture and storage projects (BECCS), which could see it becoming the world’s first negative emissions power station. As part of the Zero Carbon Humber partnership, it could also form a part of the world’s first zero carbon industrial hub in the north of the UK.

Such projects are indicative of the big ambitions CCUS technology could realise – not just decarbonising single sites, but capturing and storing CO2 from entire industries and regions. There is still a way to go to meet that ambition, but it is clear the resources and knowledge necessary to get there are ready to be utilised.

Zero Carbon Humber

Source: Zero Carbon Humber [Click to view/download]

Learn more about carbon capture, usage and storage in our series:

The UK needs negative emissions from BECCS to reach net zero – here’s why

Early morning sunrise at Drax Power Station

Reaching the UK’s target of net zero greenhouse gas emissions by 2050 means every aspect of the economy, from shops to super computers, must reduce its carbon footprint – all the way down their supply chains – as close to zero as possible.

But as the country transforms, one thing is certain: demand for electricity will remain. In fact, with increased electrification of heating and transport, there will be a greater demand for power from renewable, carbon dioxide (CO2)-free sources. Bioenergy is one way of providing this power without reliance on the weather and can offer essential grid-stability services, as provided by Drax Power Station in North Yorkshire.

Close up of electricity pylon tower

Close up of electricity pylon tower

Beyond just power generation, more and more reports highlight the important role the next evolution of bioenergy has to play in a net zero UK. And that is bioenergy with carbon capture and storage or BECCS.

A carbon negative source of power, abating emissions from other industries

The Committee on Climate Change (CCC) says negative emissions are essential for the UK to offset difficult-to-decarbonise sectors of the economy and meet its net zero target. This may include direct air capture (DAC) and other negative emissions technologies, as well as BECCS.

BECCS power generation uses biomass grown in sustainably managed forests as fuel to generate electricity. As these forests absorb CO2 from the atmosphere while growing, they offset the amount of COreleased by the fuel when used, making the whole power production process carbon neutral. Adding carbon capture and storage to this process results in removing more CO2 from the atmosphere than is emitted, making it carbon negative.

Pine trees grown for planting in the forests of the US South where more carbon is stored and more wood inventory is grown each year than fibre is extracted for wood products such as biomass pellets

Pine trees grown for planting in the forests of the US South where more carbon is stored and more wood inventory is grown each year than fibre is extracted for wood products such as biomass pellets

This means BECCS can be used to abate, or offset, emissions from other parts of the economy that might remain even as it decarbonises. A report by The Energy Systems Catapult, modelling different approaches for the UK to reach net zero by or before 2050, suggests carbon-intensive industries such as aviation and agriculture will always produce residual emissions.

The need to counteract the remaining emissions of industries such as these make negative emissions an essential part of reaching net zero. While the report suggests that direct air carbon capture and storage (DACCS) will also play an important role in bringing CO2 levels down, it will take time for the technology to be developed and deployed at the scale needed.

Meanwhile, carbon capture use and storage (CCUS) technology is already deployed at scale in Norway, the US, Australia and Canada. These processes for capturing and storing carbon are applicable to biomass power generation, such as at Drax Power Station, which means BECCS is ready to deploy at scale from a technology perspective today.

As well as counteracting remaining emissions, however, BECCS can also help to decarbonise other industries by enabling the growth of a different low carbon fuel: hydrogen.

Enabling a hydrogen economy

The CCC’s ‘Hydrogen in a low-carbon economy report’ highlights the needs for carbon zero alternatives to fossil fuels – in particular, hydrogen or H2.

Hydrogen produced in a test tube

Hydrogen produced in a test tube

When combusted, hydrogen only produces heat and water vapour, while the ability to store it for long periods makes it a cleaner replacement to the natural gas used in heating today. Hydrogen can also be stored as a liquid, which, coupled with its high energy density makes it a carbon zero alternative to petrol and diesel in heavy transport.

There are various ways BECCS can assist the creation of a hydrogen economy. Most promising is the use of biomass to produce hydrogen through a method known as gasification. In this process solid organic material is heated to more than 700°C but prevented from combusting. This causes the material to break down into gases: hydrogen and carbon monoxide (CO). The CO then reacts with water to form CO2 and more H2.

While CO2 is also produced as part of the process, biomass material absorbs CO2 while it grows, making the overall process carbon neutral. However, by deploying carbon capture here, the hydrogen production can also be made carbon negative.

BECCS can more indirectly become an enabler of hydrogen production. The Zero Carbon Humber partnership envisages Drax Power Station as the anchor project for CCUS infrastructure in the region, allowing for the production of ‘blue’ hydrogen. Blue hydrogen is produced using natural gas, a fossil fuel. However, the resulting carbon emissions could be captured. The CO2 would then be transported and stored using the same system of pipelines and a natural aquifer under the North Sea as used by BECCS facilities at Drax.

This way of clustering BECCS power and hydrogen production would also allow other industries such as manufactures, steel mills and refineries, to decarbonise.

Lowering the cost of flexible electricity

One of the challenges in transforming the energy system and wider economy to net zero is accounting for the cost of the transition.

The Energy Systems Catapult’s analysis found that it could be kept as low as 1-2% of GDP, while a report by the National Infrastructure Commission (NIC) projects that deploying BECCS would have little impact on the total cost of the power system if deployed for its negative emissions potential.

The NIC’s modelling found, when taking into consideration the costs and generation capacity of different sources, BECCS would likely be run as a baseload source of power in a net zero future. This would maximise its negative emissions potential.

This means BECCS units would run frequently and for long periods, uninterrupted by changes in the weather, rather than jumping into action to account for peaks in demand. This, coupled with its ability to abate emissions, means BECCS – alongside intermittent renewables such as wind and solar – could provide the UK with zero carbon electricity at a significantly lower cost than that of constructing a new fleet of nuclear power stations.

The report also goes on to say that a fleet of hydrogen-fuelled power stations could also be used to generate flexible back-up electricity, which therefore could be substantially cheaper than relying on a fleet of new baseload nuclear plants.

However, for this to work effectively, decisions need to be made sooner rather than later as to what approach the UK takes to shape the energy system before 2050.

The time to act is now

What is consistent across many different reports is that BECCS will be essential for any version of the future where the UK reaches net zero by 2050. But, it will not happen organically.

Sunset and evening clouds over the River Humber near Sunk Island, East Riding of Yorkshire

Sunset and evening clouds over the River Humber near Sunk Island, East Riding of Yorkshire

A joint Royal Society and Royal Academy of Engineering Greenhouse Gas Removal report, includes research into BECCS, DACCS and other forms of negative emissions in its list of key actions for the UK to reach net zero. It also calls for the UK to capitalise on its access to natural aquifers and former oil and gas wells for CO2 storage in locations such as the North Sea, as well as its engineering expertise, to establish the infrastructure needed for CO2 transport and storage.

However, this will require policies and funding structures that make it economical. A report by Vivid Economics for the Department for Business, Energy and Industrial Strategy (BEIS) highlights that – just as incentives have made wind and solar viable and integral parts of the UK’s energy mix – BECCS and other technologies, need the same clear, long-term strategy to enable companies to make secure investments and innovate.

However, for policies to make the impact needed to ramp BECCS up to the levels necessary to bring the UK to net zero, action is needed now. The report outlines policies that could be implemented immediately, such as contracts for difference, or negative emissions obligations for residual emitters. For BECCS deployment to expand significantly in the 2030s, a suitable policy framework will need to be put in place in the 2020s.

Beyond just decarbonising the UK, a report by the Intergovernmental Panel on Climate Change (IPCC) highlights that BECCS could be of even more importance globally. Differing scales of BECCS deployment are illustrated in its scenarios where global warming is kept to within 1.5oC levels of pre-industrial levels, as per the Paris Climate agreement.

BECCS has the potential to play a vital role in power generation, creating a hydrogen economy and offsetting other emissions. As it continues to progress, it is becoming increasingly effective and cost efficient, offering a key component of a net zero UK.

Learn more about carbon capture, usage and storage in our series:

From steel to soil – how industries are capturing carbon

Construction metallic bars in a row

Carbon capture, use and storage (CCUS) is a vital technology in the energy industry, with facilities already in place all over the world aiming to eliminate carbon dioxide (CO2) emissions.

However, for decarbonisation to go far enough to keep global warming below 2oC – as per the Paris Climate Agreement – emission reductions are needed throughout the global economy.

From cement factories to farmland, CCUS technology is beginning to be deployed in a wide variety of sectors around the world.

Construction

The global population is increasingly urban and by 2050 it’s estimated 68% of all people will live in cities. For cities to grow sustainably, it’s crucial the environmental impact of the construction industry is reduced.

Construction currently accounts for 11% of all global carbon emissions. This includes emissions from the actual construction work, such as from vehicle exhaust pipes, but a more difficult challenge is reducing embedded emissions from the production of construction materials.

Steel and concrete are emissions-heavy to make; they require intense heat and use processes that produce further emissions. Deploying widespread CCUS in the production of these two materials holds the key to drastically reducing carbon emissions from the built environment.

Steel manufacturing alone, regardless of the electricity used to power production, is responsible for about 7% of global emissions. Projects aimed at reducing the levels of carbon released in production are planned in Europe and are already in motion in the United Arab Emirates.

Abu Dhabi National Oil Company and Masdar, a renewable energy and sustainability company, formed a joint venture in 2013 with the aim of developing commercial-scale CCUS projects.

In its project with Emirates Steel, which began in 2016, about 800,000 tonnes of CO2 is captured a year from the steel manufacturing plant. This is sequestered and used in enhanced oil recovery (EOR). The commercially self-sustaining nature of this project has led to investigation into multiple future industrial-scale projects in the region.

Cement manufacturing, a process that produces as much as 8% of global greenhouse gases, is also experiencing the growth of innovative CCUS projects.

Pouring ready-mixed concrete after placing steel reinforcement to make the road by mixing in construction site

Norcem Cement plant in Brevik, Norway has already begun experimenting with CCUS, calculating that it could capture 400,000 tonnes of CO2 per year and store it under the North Sea. If the project wins government approval, Norcem could commence operations as soon as 2023.

However, as well as reducing emissions from traditional cement manufacturing and the electricity sources that power it, a team at Massachusetts Institute of Technology is exploring a new method of cement production that is more CCUS friendly.

By pre-treating the limestone used in cement creation with an electrochemical process, the CO2 produced is released in a pure, concentrated stream that can be more easily captured and sequestered underground or harnessed for products, such as fizzy drinks.

Agriculture

It’s hard to overstate the importance of the agriculture industry. As well as feeding the world, it employs a third of it.

Within this sector, fertiliser plays an essential role in maintaining the global food supply. However, the fertiliser production industry represents approximately 2% of global CO2 emissions.

CCUS technology can reduce the CO2 contributions made by the manufacturing of fertiliser, while maintaining crop reliability. In 2019, Oil and Gas Climate Initiative’s (OGCI) Climate Investments announced funding for what is expected to be the biggest CCUS project in the US.

Tractor with pesticide fungicide insecticide sprayer on farm land top view Spraying with pesticides and herbicides crops

Based at the Wabash Valley Resources fertiliser plant in Indiana, the project will capture between 1.3 and 1.6 million tonnes of CO2 from the ammonia producer per year. The captured carbon will then be stored 2,000 metres below ground in a saline aquifer.

Similarly, since the turn of the millennium Mitsubishi Heavy Industries Engineering has deployed CCUS technology at fertiliser plants around Asia. CO2 is captured from natural gas pre-combustion, and used to create the urea fertiliser.

However, the agriculture industry can also capture carbon in more nature-based and cheaper ways.

Soil acts as a carbon sink, capturing and locking in the carbon from plants and grasses that die and decay into it. However, intensive ploughing can damage the soil’s ability to retain CO2.

It only takes slight adjustments in farming techniques, like minimising soil disturbance, or crop and grazing rotations, to enable soil and grasslands to sequester greater levels of CO2 and even make farms carbon negative.

Transport

The transport sector is the fastest growing contributor to climate emissions, according to the World Health Organisation. Electric vehicles and hydrogen fuels are expected to serve as the driving force for much of the sector’s decarbonisation, however, at present these technologies are only really making an impact on roads. There are other essential modes of transport where CCUS has a role to play. 

Climeworks, a Swiss company developing units that capture CO2 directly from the air, has begun working with Rotterdam The Hague Airport to develop a direct air capture (DAC) unit on the airport’s grounds.

Climeworks Plant technology [Source: Climeworks Photo by Julia Dunlop]

hydrogen filling station in the Hamburg harbor city

Hydrogen filling station in Hamburg, Germany.

However, beyond just capturing CO2 from planes taking off, Climeworks aims to use the CO2 to produce a synthetic jet fuel – creating a cycle of carbon reusage that ensures none is emitted into the atmosphere. A pilot project aims to create 1,000 litres of the fuel per day in 2021.

Another approach to zero-carbon transport fuel is the utilisation of hydrogen, which is already powering cars, trains, buses and even spacecraft.

Hydrogen can be produced in a number of ways, but it’s predominantly created from natural gas, through a process in which CO2 is a by-product. CCUS can play an important role here in capturing the CO2 and storing it, preventing it entering the atmosphere.

The hydrogen-powered vehicles then only emit water vapour and heat.

From every industry to every business to everyone

As CCUS technology continues to be deployed at scale and made increasingly affordable, it has the potential to go beyond just large industrial sites, to entire economic regions.

Global Thermostat is developing DAC technology which can be fitted to any factory or plant that produces heat in its processes. The system uses the waste heat to power a DAC unit, either from a particular source or from the surrounding atmosphere. Such technologies along with those already in action like bioenergy with carbon capture and storage (BECCS), can quickly make negative emissions a reality at scale.

However, to capture, transport and permanently store CO2 at the scale needed to reach net zero, collaboration partnerships and shared infrastructure between businesses in industrial regions is essential.

The UK’s Humber region is an example of an industrial cluster where a large number of high-carbon industrial sites sit in close proximity to one another. By installing BECCS and CCUS infrastructure that can be utilised by multiple industries, the UK can have a far greater impact on emissions levels than through individual, small-scale CCUS projects.

Decarbonising the UK and the world will not be achieved by individual sites and industries but by collective action that transcends sectors, regions and supply chains. Implementing CCUS at as large a scale as possible takes a greater stride towards bringing the wider economy and society to net zero.

Learn more about carbon capture, usage and storage in our series:

5 projects proving carbon capture is a reality

Petra Nova Power Station

The concept of capturing carbon dioxide (CO2) from power station, refinery and factory exhausts has long been hailed as crucial in mitigating the climate crisis and getting the UK and the rest of the world to net zero. After a number of false starts and policy hurdles, the technology is now growing with more momentum than ever. Carbon capture, use and storage (CCUS) is finally coming of age.

Increasing innovation and investment in the space is enabling the development of CCUS schemes at scale. Today, there are over 19 large-scale CCUS facilities in operation worldwide, while a further 32 in development as confidence in government policies and investment frameworks improves.

Once CO2 is captured it can be stored underground in empty oil and gas reservoirs and naturally occurring saline aquifers, in a process known as sequestration. It has also long been used in enhanced oil recovery (EOR), a process where captured CO2 is injected into oil reservoirs to increase oil production.

Drax Power Station is already trialling Europe’s first bioenergy carbon capture and storage (BECCS) project. This combination of sustainable biomass with carbon capture technology could remove and capture more than 16 million tonnes of CO2 a year and put Drax Power Station at the centre of wider decarbonisation efforts across the region as part of Zero Carbon Humber.

Here are five other projects making carbon capture a reality today:

Snøhvit & Sleipner Vest 

Who: Sleipner – Equinor Energy, Var Energi, LOTOS, KUFPEC; Snøhvit – Equinor Energy, Petoro, Total, Neptune Energy, Wintershall Dean

Where: Norway

Sleipner Vest Norway

Sleipner Vest offshore carbon capture and storage (CCS) plant, Norway [Click to view/download]

Sleipner Vest was the world’s first ever offshore carbon capture and storage (CCS) plant, and has been active since 1996. The facility separates CO2 from natural gas extracted from the Sleipner field, as well as from at the Utgard field, about 20km away. This method of carbon capture means CO2 is removed before the natural gas is combusted, allowing it to be used as an energy source with lower carbon emissions.

Snøhvit, located offshore in Norway’s northern Barents Sea, operates similarly but here natural gas is pumped to an onshore facility for carbon removal. The separated and compressed CO2 from both facilities is then stored, or sequestered, in empty reservoirs under the sea.

The two projects demonstrate the safety and reality of long-term CO2 sequestration – as of 2019, Sleipner has captured and stored over 23 million tonnes of CO2 while Snøhvit stores 700,000 tonnes of CO2 per year.

Petra Nova

Who: NRG, Mitsubishi Heavy Industries America, Inc. (MHIA) and JX Nippon, a joint venture with Hilcorp Energy 

Where: Texas, USA

In 2016, the largest carbon capture facility in the world began operation at the Petra Nova coal-fired power plant.

Using a solvent developed by Mitsubishi and Kansai Electric Power, called KS-1, the CO2 is absorbed and compressed from the exhausts of the plant after the coal has been combusted. The captured CO2 is then transported and used for EOR 80 miles away on the West Ranch oil field.

Carbon capture facility at the Petra Nova coal-fired power plant, Texas, USA

As of January 2020, over 3.5 million tonnes of CO2 had been captured, reducing the plant’s carbon emissions by 90%. Oil production, on the other hand, increased by 1,300% to 4,000 barrels a day. As well as preventing CO2 from being released into the atmosphere, CCUS has also aided the site’s sustainability by eliminating the need for hydraulic drilling.


Gorgon LNG, Barrow Island, Australia [Click to view/download]

Gorgon LNG

Who: Operated by Chevron, in a joint venture with Shell, Exxon Mobil, Osaka Gas, Tokyo Gas, Jera

Where: Barrow Island, Australia

In 2019 CCS operations began at one of Australia’s largest liquified natural gas production facilities, located off the Western coast. Here, CO2 is removed from natural gas before the gas is cooled to -162oC, turning it into a liquid.

The removed CO2 is then injected via wells into the Dupuy Formation, a saline aquifer 2km underneath Barrow Island.

Once fully operational (estimated to be in 2020), the project aims to reduce the facility’s emissions by about 40% and plans to store between 3.4 and 4 million tonnes of CO2 each year.

Quest

Shell’s Quest carbon capture facility, Alberta, Canada

Who: Operated by Shell, owned by Chevron and Canadian Natural Resources

Where: Alberta, Canada

The Scotford Upgrader facility in Canada’s oil sands uses hydrogen to upgrade bitumen (a substance similar to asphalt) to make a synthetic crude oil.

In 2015, the Quest carbon capture facility was added to Scotford Upgrader to capture the CO2 created as a result of making the site’s hydrogen. Once captured, the CO2 is pressurised and turned into a liquid, which is piped and stored 60km away in the Basal Cambrian Sandstone saline aquifer.

Over its four years of crude oil production, four million tonnes of CO2 have been captured. It is estimated that, over its 25-year life span, this CCS technology could capture and store over 27 million tonnes of CO2.

Chevron estimates that if the facility were to be built today, it would cost 20-30% less, a sign of the falling cost of the technology.

Boundary Dam

Who: SaskPower

Where: Saskatchewan, Canada

Boundary Dam, a coal-fired power station, became the world’s first post-combustion CCS facility in 2014.

The technology uses Shell’s Cansolv solvent to remove CO2 from the exhaust of one of the power station’s 115 MW units. Part of the captured CO2 is used for EOR, while any unused CO2 is stored in the Deadwood Formation, a brine and sandstone reservoir, deep underground.

As of December 2019, more than three million tonnes of CO2 had been captured at Boundary Dam. The continuous improvement and optimisations made at the facility are proving CCS technology at scale and informing CCS projects around the world, including a possible retrofit project at SaskPower‘s 305 MW Shand Power Station.

Top image: Carbon capture facility at the Petra Nova coal-fired power plant, Texas, USA

Learn more about carbon capture, usage and storage in our series:

6 disused power stations renovated and reimagined

E-WERK entrance

The Tate Modern and Battersea Power Station along the banks of the Thames are architectural icons of the London skyline. But before they were landmarks, they were oil- and coal-burning power stations, right in the heart of the city they powered.

As the city developed, the technology used to generate power advanced, and the need for cleaner fuel sources grew, the requirement for large, city-based fossil fuel power stations like these fell. The closure of Battersea and the Bankside power stations became inevitable.

Rather than knocking them down, however, it was clear their scale, heritage and location could be repurposed to meet an entirely new set of needs for the city. Now, as an art gallery and modern, mixed-use neighbourhood space, they remain in service to the city while retaining part of their heritage.

Eindhoven’s Innovation Powerhouse, Netherlands

Eindhoven’s Innovation Powerhouse, Netherlands. Photo: Tycho Merijn.

The reimagining of disused power stations is not just a London phenomenon. It is one seen around the world, where industrial buildings like these are being transformed for a range of purposes.

Eindhoven’s Innovation Powerhouse

Eindhoven’s Innovation Powerhouse in the Netherlands remains distinguishable as a power station due to its enormous coal chimneys, but today it serves a different purpose. The original skeleton of the building has been repurposed as a creative office space for innovative tech companies. The open plan structure encourages collaboration and creativity and its location right in the city centre makes it easily accessible to employees. In a nod to its previous use, however, a biogas plant remains situated next door, burning wood waste to produce renewable electricity and heat for the building.

Beloit’s cultural ‘Powerhouse’

Like Innovation Powerhouse, the exterior of Blackhawk Generating Station in Beloit, Wisconsin remains clearly identifiable as a power station. A century ago the once gas-fired plant supplied peak-time electricity to surrounding cities, but since being bought by Beloit University, it’s being transformed into ‘The Powerhouse’– a leisure and cultural centre for both students and the general public. Designs include an auditorium, a health and wellness hub, a swimming pool, lecture halls and more. It sits along the Rock River, between the university and the city – a prime location for bringing communities together, and is due to open in January 2020.

CGI of The Powerhouse, Beloit College Wisconsin. Image: Studio Gang Architects

An artist’s impression of The Powerhouse, Beloit College Wisconsin. Photo: Studio Gang Architects.

The Tejo Power Station Electricity Museum, Lisbon, Portugal.

Lisbon’s electricity museum

The Tejo Power Station once supplied electricity to the whole of Lisbon. Today it’s a museum and art gallery, but remains a testament to Portugal’s technological, historical and industrial heritage. It pays homage to the evolution of electricity through a permanent collection that includes original machinery from its construction in 1908, and charts its evolution from baseload electricity generator to standby power station used only to complement the country’s prominent supply of hydro plants. It’s a space that celebrates the heritage of the building, an attitude reflected throughout Portugal – there is even an energy museums roadmap created for people to tour a trail of decommissioned power stations.

Rome’s renaissance power station

Centrale Montemartini Thermoelectric plant was Rome’s first public power station, operating between 1912-1963. Decommissioned in the 1960s, it was adapted to temporarily house an exhibition of renaissance sculptures and archaeological finds from Rome’s Capitoline Museums that were at the time undergoing renovation. The clash of the classical artworks and the power station’s original equipment was such a success that it has been open ever since.

Centrale Montemartini, Rome, Italy.

Berlin’s E-WERK Luckenwalde

Why replace a power station with an art gallery if it could in fact be both? Berlin’s E-WERK Luckenwalde is a hybrid – what was once a coal power plant before the collapse of communism in 1989, is now both a renewable power plant and an art gallery. It uses waste woodchips from neighbouring companies to generate and sell power to the grid to fund the cost of a contemporary art centre housed inside it. It still generates electricity, only this time it’s renewable and powers the art gallery, which in turn energises the artistic community of Berlin.

 

Copenhagen’s futuristic Amager Bakke Waste-to-Energy-Plant

 Copenhagen’s Amager Bakke Waste-to-Energy-Plant is one of the cleanest incineration plants in the world. Opened in 2017 to replace a nearby 45-year-old incineration plant, it burns municipal waste to create heat and power for the surrounding area. What really sets it apart, however, is its artificial ski slope cascading down one side of the building, which has been open to the public all year-round since October 2019. This purposefully bold design sets out to change people’s perceptions of what power stations can do.

CopenHill ski slope, Amager Bakke, Copenhagen, Denmark. Photos: Max Mestour.

CopenHill ski slope, Amager Bakke, Copenhagen, Denmark. Photos: Max Mestour.

The decommissioning of power stations has resulted in cities’ acquiring buildings in prime central locations for the public to enjoy. These examples demonstrate the world’s transition to renewable power, the advances of technology, and populations’ increasing awareness of the environmental impact of their energy usage.

Top image: Entrance of E-WERK Luckenwalde, 2019. Photo: Ben Westoby. Click here to view/download

What is net zero?

Skyscraper vertical forest in Milan

For age-old rivals Glasgow and Edinburgh, the race to the top has taken a sharp turn downwards. Instead, they’re in a race to the bottom to earn the title of the first ‘net zero’ carbon city in the UK.

While they might be battling to be the first in the UK to reach net zero, they are far from the only cities with net zero in their sights. In the wake of the growing climate emergency, cities, companies and countries around the world have all announced their own ambitions for hitting ‘net zero’.

It has become a global focus based on necessity – for the world to hit the Paris Agreement targets and limit global temperature rise to under two degrees Celsius, it’s predicted the world must become net zero by 2070.

Yet despite its ubiquity, net zero is a term that’s not always fully understood. So, what does net zero actually mean?

Glasgow, Scotland. Host of COP26.

What does net zero mean?

‘Going net zero’ most often refers specifically to reaching net zero carbon emissions. But this doesn’t just mean cutting all emissions down to zero.

Instead, net zero describes a state where the greenhouse gas (GHG) emitted [*] and removed by a company, geographic area or facility is in balance.

In practice, this means that as well as making efforts to reduce its emissions, an entity must capture, absorb or offset an equal amount of carbon from the atmosphere to the amount it releases. The result is that the carbon it emits is the same as the amount it removes, so it does not increase carbon levels in the atmosphere. Its carbon contributions are effectively zero – or more specifically, net zero.

The Grantham Research Institute on Climate Change and the Environment likens the net zero target to running a bath – an ideal level of water can be achieved by either turning down the taps (the mechanism adding emissions) or draining some of the water from the bathtub (the thing removing of emissions from the atmosphere). If these two things are equally matched, the water level in the bath doesn’t change.

To reach net zero and drive a sustained effort to combat climate change, a similar overall balance between emissions produced and emissions removed from the atmosphere must be achieved.

But while the analogy of a bath might make it sound simple, actually reaching net zero at the scale necessary will take significant work across industries, countries and governments.

How to achieve net zero

The UK’s Committee on Climate Change (CCC) recommends that to reach net zero all industries must be widely decarbonised, heavy good vehicles must switch to low-carbon fuel sources, and a fifth of agricultural land must change to alternative uses that bolster emission reductions, such as biomass production.

However, given the nature of many of these industries (and others considered ‘hard-to-treat’, such as aviation and manufacturing), completely eliminating emissions is often difficult or even impossible. Instead, residual emissions must be counterbalanced by natural or engineered solutions.

Natural solutions can include afforestation (planting new forests) and reforestation (replanting trees in areas that were previous forestland), which use trees’ natural ability to absorb carbon from the atmosphere to offset emissions.

On the other hand, engineering solutions such as carbon capture usage and storage (CCUS) can capture and permanently store carbon from industry before it’s released into the atmosphere. It is estimated this technology can capture in excess of 90% of the carbon released by fossil fuels during power generation or industrial processes such as cement production.

Negative emissions essential to achieving net zero

Click to view/download graphic. Source: Zero Carbon Humber.

Bioenergy with carbon capture and storage (BECCS) could actually take this a step further and lead to a net removal of carbon emissions from the atmosphere, often referred to as negative emissions. BECCS combines the use of biomass as a fuel source with CCUS. When that biomass comes from trees grown in responsibly managed working forests that absorb carbon, it becomes a low carbon fuel. When this process is combined with CCUS and the carbon emissions are captured at point of the biomass’ use, the overall process removes more carbon than is released, creating ‘negative emissions’.

According to the Global CCS Institute, BECCS is quickly emerging as the best solution to decarbonise emission-heavy industries. A joint report by The Royal Academy of Engineering and Royal Society estimates that BECCS could help the UK to capture 50 million tonnes of carbon per year by 2050 – eliminating almost half of the emissions projected to remain in the economy.

The UK’s move to net zero

In June 2019, the UK became the first major global economy to pass a law to reduce all greenhouse gas emissions to net zero by 2050. It is one of a small group of countries, including France and Sweden, that have enacted this ambition into law, forcing the government to take action towards meeting net zero.

Electrical radiator

Although this is an ambitious target, the UK is making steady progress towards it. In 2018 the UK’s emissions were 44% below 1990 levels, while some of the most intensive industries are fast decarbonising – June 2019 saw the carbon content of electricity hit an all-time low, falling below 100 g/kWh for the first time. This is especially important as the shift to net zero will create a much greater demand for electricity as fossil fuel use in transport and home heating must be switched with power from the grid.

Hitting net zero will take more than just this consistent reduction in emissions, however. An increase in capture and removal technologies will also be required. On the whole, the CCC predict an estimated 75 to 175 million tonnes of carbon and equivalent emissions will need to be removed by CCUS solutions annually in 2050 to fully meet the UK’s net zero target.

This will need substantial financial backing. The CCC forecasts that, at present, a net zero target can be reached at an annual resource cost of up to 1-2% of GDP between now and 2050. However, there is still much debate about the role the global carbon markets need to play to facilitate a more cost-effective and efficient way for countries to work together through market mechanisms.

Industries across the UK are starting to take affirmative action to work towards the net zero target. In the energy sector, projects such as Drax Power Station’s carbon capture pilots are turning BECCS increasingly into a reality ready to be deployed at scale.

Along with these individual projects, reaching net zero also requires greater cooperation across the industrial sectors. The Zero Carbon Humber partnership between energy companies, industrial emitters and local organisations, for example, aims to deliver the UK’s first zero carbon industrial cluster in the Humber region by the mid-2020s.

Nonetheless, efforts from all sectors must be made to ensure that the UK stays on course to meet all its immediate and long-term emissions targets. And regardless of whether or not Edinburgh or Glasgow realise their net zero goals first, the competition demonstrates how important the idea of net zero has become and society’s drive for real change across the UK.

Drax has announced an ambition to become carbon negative by 2030 – removing more carbon from the atmosphere than produced in our operations, creating a negative carbon footprint. Track our progress at Towards Carbon Negative.

[*] In this article we’ve simplified our explanation of net zero. Carbon dioxide (CO2) is the most abundant greenhouse gas (GHG). It is also a long-lived GHG that creates warming that persists in the long term. Although the land and ocean absorb it, a significant proportion stays in the atmosphere for centuries or even millennia causing climate change. It is, therefore, the most important GHG to abate. Other long-lived GHGs include include nitrous oxide (N2O, lifetime of circa 120 years) and some F-Gasses (e.g. SF6 with a lifetime of circa 3,200 years). GHGs are often aggregated as carbon dioxide equivalent (abbreviated as CO2e or CO2eq) and it is this that net zero targets measure. In this article, ‘carbon’ is used for simplicity and as a proxy for ‘carbon dioxide’, ‘CO2‘, ‘GHGs’ or ‘CO2e’.

What makes a country’s electricity system stable?

How reliable is Great Britain’s electricity system? Across the country electricity is accessible and safe to use for just about everyone, every day. Wide-scale blackouts are very rare, but they do happen.

On 9 August 2019 a power cut saw more than 1 million people and services lose power for just under an hour. It was the first large-scale blackout since 2013. Although this proves the network is not infallible, the fact it was such an outlier in the normal performance of the grid highlights its otherwise exemplary stability and reliability.

But what is it exactly that makes an electricity system stable and reliable?

At its core, system stability comes down to two key factors: a country or region’s ability to generate enough electricity, and its ability to then transport it through a transmission system to where it’s needed.

When everything is running smoothly an electricity system is described as being ‘balanced’. In this state supply meets demand exactly and all necessary conditions – such as voltage and frequency – are right for the safe and efficient transport of electricity. Any slight deviation or mismatch across any of these factors can cause power stations or infrastructure to trip and cut off power.

A recent report by Electric Insights identified the countries around the world with most reliable power systems, in which the UK was fourth. It offers an insight into what factors contribute to building a stable system, as well as those that hold some countries back.

Generation and reliable infrastructure  

According to the report, France has the most reliable electricity system of any country with a population of more than five million people, having gone a decade without a power outage. One reason for this is the country’s fleet of 58 state-controlled nuclear power stations which generate huge amounts of consistent baseload power.

In 2017 nuclear power made up more than 70% of France’s electricity generation while hydropower accounted for another 10% of the 475 Terawatt hours (TWh) consumed across the county that year.

Penly Nuclear Power Station near Dieppe, France.

Now, as its nuclear stations age, France is increasing its renewable power generation. As these sources are often weather dependent, imports from and exports to its neighbours are expected to become a more important part of keeping the French network stable at times when there is little sunlight or wind – or too much.

Importing and exporting electricity is also key to Switzerland’s power system (third most reliable network on the list), with 41 border-crossing power lines allowing the country to serve as a crossroads for power flowing between Italy and Germany. It means its total imports and exports can often exceed electricity production within the country.

Electricity pylons in Switzerland.

Switzerland’s mountainous landscape also means ensuring a reliable electricity system requires a carefully maintained transmissions system. The Swiss grid is 6,700 kilometres long and uses 40,000 hi-tech metering points along it to record and process around 10,000 data points in seconds.

The key to the stability of South Korea – the second most stable network on the list – is also its imports, but rather than actual megawatts it comes in the form of oil, gas and coal. The country is the world’s fourth biggest coal importer and its coal power stations account for 42% of its total generation.

Seoul, South Korea.

However, in the face of urban smog issues and global decarbonisation goals it is pursuing a switch to renewables. This can come with repercussions to stability, so South Korea is also investing in transmission infrastructure, including a new interconnector from the east of the country to Seoul, its main source of electricity consumption.

It highlights that if decarbonisation is going to accelerate at the pace needed to meet Paris Agreement targets, then many of the world’s most stable and reliable electricity systems need to go through significant change. Balance will be needed between meeting decarbonisation targets with overall system stability.

However, there are many countries around the world that focus less on ensuring consistent stability through decarbonisation and are instead more focused on how to achieve stability in the first place.

Stalling generation

The Democratic Republic of Congo is the eleventh-largest country on earth. It is rich with minerals and resources, yet it is the least electrified nation. Just 9% of people have access to power (in rural areas that number drops to just 1%) and the country suffers blackouts more than once a month as a result of ‘load shedding’, when there isn’t enough power to meet demand so parts of the grid are deliberately shut down to prevent the entire system failing.

Currently, the country has just 2.7 GW of installed electricity capacity, 2.5 GW of which comes from hydropower. The country’s Inga dam facility on the Congo river has the potential to generate more electricity than any other single source of power on the planet (it’s thought the proposed Grand Inga site could produce as much as 40 GW, twice that of China’s Three Gorges Dam) and provide electricity to a massive part of southern Africa. A legacy of political instability in the country, however, has so far made securing financing difficult.

Congo River, Democratic Republic of Congo.

Nigeria is one of the world’s fastest growing economies, and with that comes rapidly rising demand for electricity. However, just 45% of the country is currently electrified, and of these areas, many still suffer outages at least once a month. The country has 12.5 GW of installed capacity, most of which comes from thermal gas stations, but technical problems in power stations and infrastructure, mean it is often only capable of generating as much as 5 GW to transmit on to end consumers.

This limited production capability means it often fails to meet demand, resulting in outages. The problem has been prolonged by struggling utility companies that are unable to make the investments needed to stabilise electricity supply.

Keen to resolve what it has referenced as an ‘energy supply crisis’, the Nigerian government recently secured a $1 billion credit line from the World Bank to improve access to electricity across the country.

The investment will focus in part on securing the transmission system from theft, thus allowing the private utility companies to generate the revenue needed to improve generation.

Transmission holding back emerging systems

Balancing transmissions systems is a crucial part of stable electricity networks. Maintaining a steady frequency that delivers safe, usable electricity into homes and businesses is at the crux of reliability. Even countries that can generate enough electricity are held back if they can’t efficiently get the electricity to where it is needed.

Brazil has an abundance of hydropower installed. Its 97 GW of hydro accounts for more than 70% of the country’s electricity mix. However, the country’s dams are largely concentrated around the Amazon basin in the North West, whereas demand comes from cities in the south and eastern coastline. Transporting electricity across long distances between generator and consumer makes it difficult to maintain the correct voltage and frequency needed to keep a stable and reliable flow of electricity. As a result, Brazil suffers a blackout every one-to-three months.

Hydropower plant Henry Borden in the Serra do Mar, Brazil.

The country is tackling its transmissions problems by diversifying its electricity mix to include greater levels of solar and wind off its east coast – closer to many of its major cities. The country has also looked to new technology for solutions.

At the start of the decade as much as 8% of all electricity being generated in Brazil was being stolen, reaching as high as 40% in some areas. These illegal hookups both damage infrastructure, making it less reliable, as well as blur the true demand, making grid management challenging.

Brazil has since deployed smart meters to measure electricity’s journey from power stations to end users more accurately, allowing operators to spot anomalies sooner. Electricity theft is a major problem in many developing regions, with as much as $10 billion worth of power lost each year in India, which suffers blackouts as often as Brazil.

It highlights that even when there is generation to meet demand, maintaining stability at a large scale requires constant attention and innovation as new challenges arise.

This looks different around the world. Some countries might face challenges in shifting from stable thermal-based systems to renewables, others are attempting to build stability into newly connected networks. But no matter where in the world electricity is being used, ensuring reliability is an ever-ongoing task.

Electric Insights is commissioned by Drax and delivered by a team of independent academics from Imperial College London, facilitated by the college’s consultancy company – Imperial Consultants. The quarterly report analyses raw data made publicly available by National Grid and Elexon, which run the electricity and balancing market respectively, and Sheffield Solar. Read the full Q3 2019 Electric Insights report or download the PDF version.

How Scotland’s sewage becomes renewable energy

Stevie Gilluley Senior Operator at Daldowie fuel plant

From traffic pollution to household recycling and access to green spaces, cities and governments around the world are facing increasing pressure to find solutions to a growing number of urban problems.  

One of these which doesn’t come up often is sewage. But every day, 11 billion litres of wastewater from drains, homes, businesses and farms is collected across the UK and treated to be made safe to re-enter the water system.   

Although for the most part sewage treatment occurs beyond the view of the general population, it is something that needs constant work. If not dealt with properly, it can have a significant effect on the surrounding environment.  

Of the many ways that sewage is dealt with, perhaps one of the most innovative is to use it for energy. Daldowie fuel plant, near Glasgow is one such place which processes sewage sludge taken from the surrounding area into a renewable, low carbon form of biomass fuel.  

The solution in the sludge   

In operation since 2002, Daldowie was acquired by Drax at the end of 2018 and today processes 35% of all of Scotland’s wastewater sludge, into dry, low-odour fuel pellets.   

“We receive as much as 2.5 million tonnes of sludge from Scottish Water a year,” says Plant Manager Dylan Hughes who leads a team of 71 employees, “And produce up to 50,000 tonnes of pellets, making it one of the largest plants of this kind in the world.”  

“We have to provide a 24/7, 365-day service that is built into the infrastructure of Glasgow,” he explains.   

This sludge processed at Daldowie is not raw wastewater, which is treated in Scottish Water’s sewage facilities. Instead, the sludge is a semi-solid by-product of the treatment process, made of the organic material and bacteria that ends up in wastewater from homes and industry, from drains, sinks and, yes, toilets.   

Until the late 1990s, one of Great Britain’s main methods of disposing of sludge was by dumping it in the ocean. After this practice was banned, cities where left to figure out ways of dealing with the sludge.   

Using sludge as a form of fertiliser or burying it in landfills was an already established practice. However, ScottishPower, instead decided to investigate the potential of turning sludge into a dry fuel pellet, that could offer a renewable, low carbon substitute to coal at its power plants. 

Cement manufacturing fuel kilns

Daldowie was originally designed to supply fuel to Methil Power Station near Fife, which ran on coal slurry. However, it was decommissioned in 2000, before Daldowie could begin delivering fuel to it. This led the plant to instead provide fuel to Longannet Power Station where it was used to reduce its dependency on coal, before it too was decommissioned in 2016. 

Today Daldowie’s pellets are used in England and Scotland to fuel kilns in cement manufacturing – an industry attempting to navigate the same decarbonisation challenges as power generation which Daldowie was established to tackle.  

Though the end use of the fuel has changed, the process through which the facility transforms the waste remains the same.  

The process of turning waste to energy  

The process starts after wastewater from Glasgow and the surrounding area is treated by Scottish Water. Daldowie receives 90% of the sludge it processes directly via a pressurised sludge pipeline, the rest is delivered via sealed tanker lorries.   

When it arrives at Daldowie, the sludge is 98% water and 2% solid organic waste. It is first screened for debris before entering the plant’s 12 centrifuges, which act as massive spinning driers. These separate water from what is known as ‘sludge cake’, the semi-solid part of the sludge feedstock. This separated water is then cleaned so it can either be used elsewhere in the process or released into the nearby River Clyde. 

Membrane Tank at Daldowie fuel plant

The remaining sludge cake is dried using air heated to 450 degrees Celsius using natural gas (this also reduces germs through pasteurisation), while the rotating drums give the fuel granules their pellet shape. Once dried the pellets are cooled and inspected for quality. Any material not up to necessary standards is fed back into the system for reprocessing. Fuel that does meet the right standards is cooled further and then stored in silos.   

Where possible throughout the process, hot air and water are reused, helping keep costs down and ensuring the process is efficient.  

Nearly two decades into its life, very little has had to change in the way the plant operates thanks to these efficiencies. But while the process of turning the waste sludge into energy remains largely unchanged, there is, as always, room for new innovation 

 Improving for the future of the site 

Daldowie is contracted to recycle wastewater for Scottish Water until 2026. To ensure the plant is still as efficient and effective as possible, the Daldowie team is undertaking a technical investigation of what, if anything, would be needed to extend the life of the plant for at least an additional five years. 

“The plant operates under the highest environmental and health and safety standards but further improvements are being planned in 2020.” Hughes explains, “We are upgrading the odour control equipment to ensure we have a best in class level of performance.  

The control room and plant operators at Daldowie

“Drax’s Scotland office, in Glasgow, is working with other industrial facilities in the area, as well as the Scottish Environmental Protection Agency (SEPA), to work with the local community. We are putting in place a series of engagement events, including plant tours from early 2020, offering local residents an opportunity to meet the local team and discuss the planned improvements.”    

There are also other potential uses for the fuel, including use at Drax Power Station. As the pellets are categorised as waste and biomass, it would require a new license for the power station.  

However, at a time when there is a greater need to reduce the impact of human waste and diversify the country’s energy, it would add another source of renewable fuel to Great Britain’s electricity mix that could help to enable a zero carbon, lower cost energy future.