Tag: Sustainable Biomass Program (SBP)

7 principles of a sustainable forest biomass policy

Biomass is playing an important role in moving the UK away from coal. At Drax Power Station, in the form of compressed wood pellets, biomass is already supplying roughly 17% of Great Britain’s renewable power.

But more than just being a low carbon replacement for fossil fuel generation, it is also crucial in maintaining the stability of the power network. Among renewable sources of power, biomass is unique in being able to provide the same range of ancillary services that can be provided by coal power stations – such as frequency control and inertia. This inherrent flexibility is vital in maintaining stability on Britain’s high voltage transmission system. Wood pellets can also reliably generate power, helping to fill in the gaps left by intermittent renewables when the wind doesn’t blow and the sun doesn’t shine and avoiding reliance on diesel, coal and gas.

However, for the UK and the wider global environment to reap the maximum benefits from biomass, it must be produced sustainably. More than this, its supply chain must be low in emissions so that clear savings can be made versus power generation with fossil fuels.

To ensure this, the use of biomass is regulated in the UK under EU Timber Regulations and the Renewables Obligation (RO). But further guidelines are set to be introduced as part of the European Parliament’s update to the Renewable Energy Directive (RED), which will specify criteria for all biomass.

There is a clear need for this, but for these to be truly successful they need to be based on a set of robust key principles. A new report by Drax outlines seven of these which can ensure sustainable biomass usage in the future.

1. Forest biomass for bioenergy should be sourced from sustainable forests

The sustainability of the forests from which biomass is sourced is key to ensuring its usage has a positive impact on the environmental, social and economic health of that supply region.

For example, a properly managed forest can boost carbon stock as the younger, faster growing trees that are replanted after felling absorb more CO2 than older, over-mature trees.  Thinning operations also increase the growth of the biggest and best trees, ensuring more carbon is stored in longer term solid wood products.

Generators should be able to demonstrate they are avoiding biomass sourced from higher-risk areas where extracting biomass could cause long-term carbon stock decreases in soils or ecosystems, as well as other factors such as biodiversity loss, soil erosion or depletion of water sources.

2. Bioenergy from forest biomass should not be produced from high-risk feedstocks

Feedstocks, the raw materials turned into biomass pellets, must come from sustainable sources and avoid protected and sensitive sites that could be considered a risk.

In 2016 around 40% of all feedstock supplied to Drax originated as a sawmill residue. Processes such as thinning also serve as a source of biomass feedstock, while also benefitting the overall health and quality of the forest. Thinning a semi mature stand of trees allows the forest owner to maximise the production of higher value saw-timber trees, storing more carbon and generating more stable revenue streams. Having a variety of wood products markets from saw logs through to biomass incentivises land owners to maintain healthy forests and reduces the risk of conversion of forest to agriculture or urban development.

3. Carbon savings and emissions should be properly accounted

To understand the effectiveness of biomass sustainability policy, carbon savings need to be measured.

Factors such as fossil fuel substitution and the emissions associated with harvesting, processing and transporting biomass are relatively straightforward to measure.

4. Bioenergy should be limited to what can be sustainably supplied

Unlike coal or oil, which will eventually run out, more trees can be planted, grown and harvested.

That said, there is a natural limit to the amount of biomass available on the planet, and so it should not be considered an infinite resource. This is why it’s crucial biomass is sourced from sustainable forests managed following set guidelines. In short, to ensure biomass truly is sustainable, it is essential that working forests are actively managed and maintain or increase productivity.

5. Support should be given to all technologies that achieve significant carbon savings

One of the major advantages of biomass over other renewable sources is its potential to help the UK rapidly adapt to meet the EU target of achieving 27% of final energy consumption from renewables.

The fastest way for biomass to make an impact to the UK’s carbon emissions is through converting coal power stations to biomass, as is the case at Drax Power Station.

This repurposing of existing facilities not only offers rapid adoption of renewable energy, but also the ability to provide vital ancillary services other renewable sources can’t.

Quickly deploying biomass solutions in this manner will serve to help it become an established part of the energy system as it continues to decarbonise.

6. The efficient use of raw materials is supported by encouraging buoyant forest biomass markets

Globally, there are substantial amounts of forest residue and forestry industry by-products that currently go unused.

Biomass should be sourced from regions where the largest surpluses exist and the forest carbon balance can be maintained. To enable this to function effectively on a global scale, trade restrictions should be avoided.

Pelletisation offers one of the most efficient ways for this raw material to be used by making it safe, cost-efficient and low-carbon to transport around the world.

These principals are tried and tested by Drax and known to protect forests and ecosystems, as well as optimise supply chains to ensure carbon emissions are kept to a minimum. Ultimately, Drax’s experience in sustainably using biomass serve as a guide for other producers and governments to quickly decarbonise energy systems.

7. The sustainability of forest biomass should be independently verified

One of the best ways to guarantee biomass is sourced sustainably is by introducing third-parties and official guidelines that generators and suppliers can work with.

In Europe, forest level management certification schemes can act as an effective indicator that forests are managed in accordance with the guidelines laid out by Forest Europe. Outside of Europe, where Drax sources most of its biomass, independent, third part auditors can ensure the UK’s stringent criteria are being met on the ground.

Read the full report: The 7 Principles of a Sustainable Forest Biomass Policy – Proven to Work

Keeping the options open

Roughly 750 million acres of the US is covered in forestland – an area nearly 12 times the size of the UK. Approximately two-thirds of that land is working timberland, producing wood used for construction and furniture. In short, US forestry is a massive industry.

Enviva is the world’s largest wood pellet producer and biggest biomass supplier to Drax Power Station, but in the context of the US forestry industry in which it operates, Enviva does things differently.

“We’re leading the industry in sustainability and transparency in our sourcing practices,” says Jennifer Jenkins, Vice President and Chief Sustainability Officer at Enviva. “We’ve created unique tracking systems and we conduct science-based sourcing, both of which encourage sound forest stewardship.”

Specifically, Enviva draws on best practices to make decisions about which areas it sources from and how it protects the areas it doesn’t.

Protecting bottomland forests

A bottomland forest is an area of low-lying marshy area near rivers or streams that can be home to unique tree and wildlife species. These forests are flooded periodically and they can be ecologically important. However, they’re also a part of south-eastern America’s working forest landscape.

In fact, Enviva sources 3-4% of its wood from these areas, but only where harvesting improves the life of the forest. For example, in some cases, harvesting mimics naturally occurring storms, clearing the canopy so young seedlings and forest floor species thrive. More than that, harvesting can also help keep forests as forests.

“In the areas where we work, one of the biggest threats to forests is being converted to another use – specifically to developed or agricultural land,” explains Dr. Jenkins. “Our goal is to keep forests as forests. We want to preserve those with the highest risk of being converted for another use.” If landowners can gain a steady income from regular harvests, they’re likely to keep their land as working forests.

However, this is only true for carefully assessed forests where harvesting is deemed safe. Any land that doesn’t meet Enviva’s set of strict criteria means Enviva won’t source from it – it can simply walk away. The landowners, on the other hand, don’t have that luxury.

“Isn’t it our responsibility to provide another option for a landowner who might not want to facilitate a harvest?” asks Dr. Jenkins. “Maybe they recognize its value. Maybe they would prefer to conserve it instead. In recognition of our responsibility, we made a commitment.”

A fund that keeps forests as forests

Enviva’s commitment was to partner with the US Endowment for Forestry & Communities to set up the Enviva Forest Conservation Fund, a $5 million, 10-year programme designed to protect tens of thousands of acres of sensitive bottomland forests in the Virginia-North Carolina coastal plain.

It works by inviting submissions from projects looking to protect areas of high conservation value. Last year it awarded its first round of funding to four projects. More recently, in June 2017, the Enviva Forest Conservation Fund announced a total of $500,000 to go toward a second round of projects with partners such as Ducks Unlimited, an organization which – with the grant – plans to acquire more than 6,000 acres of wetlands to operate as a public Wildlife Management Area.

The Fund follows a history of proactive sustainability programmes, including a strict supplier assessment process and the company’s Track & Trace tool, a one-of-a-kind publicly-accessible system that tracks every ton of primary wood Enviva purchases back to the forest from which it was sourced. It is entirely transparent and is a testament to Enviva’s commitment to sustainability and doing things differently.

As Dr. Jenkins explains, this approach stems back to the origins of the company in 2004: “As a company that makes wood pellets, Enviva’s reason for being is to help lower greenhouse gas emissions. An emphasis on sustainability has always been a part of Enviva’s DNA.”

Sustainability, certified

Drax Morehouse woodchip truck

Of all the changes to Drax Power Station over the last decade, perhaps the biggest is one you can’t see. Since converting three of its six generating units from coal to run primarily on compressed wood pellets, Drax has reduced those units’ greenhouse gas (GHG) emissions by over 80%.

And while this is a huge improvement, it would mean nothing if the biomass with which those reductions are achieved isn’t sustainably sourced.

For this reason, Drax works with internationally-recognised certification programmes that ensure suppliers manage their forests according to environmental, social and economic criteria.

Thanks to these certification programmes, Drax can be confident it is not only reducing GHG emissions, but supporting responsible forestry from wherever wood fibre is sourced.

Sustainability certifications

The compressed wood pellets used at Drax Power Station come from various locations around the world, so Drax relies on a number of different forest certification programmes, the three main ones being the Sustainable Forest Initiative (SFI), Forest Stewardship Council® (FSC®)1 and the Programme for the Endorsement of Forest Certification (PEFC).

The programmes share a common goal of demonstrating responsible forest management, but adoption rates vary by region. European landowners and regulators are most familiar with the FSC and national PEFC standards, while North American landowners generally prefer SFI and American Tree Farm System (also members of the PEFC family). In instances in which Drax sources wood pellets carrying these certifications, or in instances in which Drax purchase pellets sourced from certified forests, these certifications offer an additional degree of assurance that the pellets are sustainable.

Over 50% of the pellets used at Drax Power Station come from the southern USA, where SFI and American Tree Farm System are the most widely implemented certification programmes. Overall adoption levels in this region are relatively modest. However, the SFI offers an additional level of certification that can be implemented by wood-procuring entities, such as sawmills, pulp mills and pellet mills.

This programme is referred to as SFI Fiber Sourcing, and to obtain it, participants must demonstrate that the raw material in their supply chains come from legal and responsible sources. These sources may or may not include certified forests. The programme also includes requirements related to biodiversity, water quality, landowner outreach and use of forest management and harvesting professionals. Together, these certification systems have long contributed to the improvement of forest management practices in a region that provides Drax with a significant proportion of its pellets.

And since the SFI and ATFS programmes are endorsed by PEFC, North American suppliers have a pathway for their region’s sustainable forest management practices to be recognised by European stakeholders.

These certification programmes have been in use for many years. But with recent growth in the market for wood pellets, a new certification system has emerged to deal specifically with woody biomass.

Trees locked up in a bundle

New kid on the block

The Sustainable Biomass Program (SBP) was set up in 2013 as a certification system to provide assurance that woody biomass is sourced from legal and sustainable sources. But rather than replacing any previous forest certification programmes, it builds on them.

For example, SBP recognises the evidence of sustainable forest management practices gathered under these other programmes. However, the PEFC, SFI and FSC programmes do not include requirements for reporting GHG emissions, a critical gap for biomass generators as they are obligated to report these emissions to European regulators. SBP fills this gap by creating a framework for suppliers to report their emissions to the generators that purchase their pellets.

When a new entity, such as a wood pellet manufacturer, first seeks certification under SBP, that entity is required to assess its supply base.

Feedstock which has already been certified by another established certification programme (SFI, FSC®, PEFC or PEFC approved schemes) is considered SBP-compliant.

All other feedstock must be evaluated against SBP criteria, and the wood pellet manufacturer must carry out a risk assessment to identify the risk of compliance against each of the 38 SBP indicators.

If during the process a specific risk is identified, for example to the forest ecosystem, the wood pellet manufacturer must put in place mitigation measures to manage the risk, such that it can be considered to be effectively controlled or excluded.

These assessments are audited by independent, third party certification bodies and scrutinised by an independent technical committee.

In conducting the risk assessment, the wood pellet manufacturer must consult with a range of stakeholders and provide a public summary of the assessment for transparency purposes.

Sustainable energy for the UK

Counting major energy companies including DONG Energy, E.ON and Drax as members, the SBP has quickly become an authoritative voice in the industry. At the end of 2016, the SBP had 74 certificate holders across 14 countries – including Drax’s pellet manufacturing arm, Drax Biomass, in Mississippi and Louisiana.

It’s a positive step towards providing the right level of certification for woody biomass, and together with the existing forestry certifications it provides Drax with the assurance that it is powering the UK using biomass from legal and sustainable sources.

Like the fast-reducing carbon dioxide emissions of Britain’s power generation sector, it’s a change you can’t see, but one that is making a big difference.

Read the Drax principles for sustainable sourcing.

1 Drax Power Ltd FSC License Code: FSC® – C119787