Author: Alice Roberts

Acquisition of 90,000 tonnes Canadian pellet plant

RNS Number: 8081U
Drax Group plc
(“Drax” or the “Group”; Symbol:DRX)

The plant, which has been operating since 1995, has the capacity to produce 90,000 tonnes of wood pellets a year, primarily from sawmill residues. Around half of the output from the plant is currently contracted to Drax.

The plant is located close to the Group’s Armstrong and Lavington plants and the port of Vancouver, and has 32 employees, who are expected to join Drax.

Following completion of the acquisition the plant is expected to contribute to the Group’s strategy to increase pellet production to 8 million tonnes a year by 2030.

The acquisition is expected to complete in Q3 2022.

Drax CEO, Will Gardiner

Will Gardiner, Drax Group CEO said:

“We look forward to welcoming the Princeton pellet plant team to Drax Group as we continue to build our global pellet production and sales business, supporting UK security of supply and increasing pellet sales to third parties in Asia and Europe as they displace fossil fuels from energy systems. Drax’s strategy to become a world leader in sustainable biomass, supports international decarbonisation goals and puts Drax at the heart of the global, green energy transition.”

Enquiries:

Drax Investor Relations: Mark Strafford
+44 (0) 7730 763 949

Media:

Drax External Communications: Ali Lewis
+44 (0) 7712 670 888

Website: www.Drax.com

END

View RNS here

Half year results for the six months ended 30 June 2022

RNS Number: 6883T
Drax Group plc
(“Drax” or the “Group”; Symbol:DRX)

Six months ended 30 JuneH1 2022H1 2021
Key financial performance measures
Adjusted EBITDA (£ million)(1)(2)225186
Continuing operations225165
Discontinued operations – gas generation-21
Net debt (£ million)(3)1,1011,029
Adjusted basic EPS (pence)(1)20.014.6
Interim dividend (pence per share)8.47.5
Total financial performance measures from continuing operations
Operating profit (£ million)20784
Profit before tax (£ million)20052

Drax CEO, Will Gardiner [click to view/download]

Will Gardiner, CEO of Drax Group, said:

“As the UK’s largest generator of renewable power by output, Drax plays a critical role in supporting the country’s security of supply. We are accelerating our investment in renewable generation, having recently submitted planning applications for the development of BECCS at Drax Power Station and for the expansion of Cruachan Pumped Storage Power Station.

“As a leading producer of sustainable wood pellets we continue to invest in expanding our pellet production in order to supply the rising global demand for renewable power generated from biomass. We have commissioned new biomass pellet production plants in the US South and expect to take a final investment decision on up to 500,000 tonnes of additional capacity before the end of the year.

“As carbon removals become an increasingly urgent part of the global route to Net Zero, we are also making very encouraging progress towards delivering BECCS in North America and progressing with site selection, government engagement and technology development.

“In the UK and US we have plans to invest £3 billion in renewables that would create thousands of green jobs in communities that need them, underlining our position as a growing, international business at the heart of the green energy transition.”

Financial highlights

  • Adjusted EBITDA £225 million up 21% (H1 2021: £186 million)
  • Strong liquidity and balance sheet – £539 million of cash and committed facilities at 30 June 2022
    • Expect to be significantly below 2 times Net Debt to Adjusted EBITDA by the end of 2022
  • Sustainable and growing dividend – expected full year dividend up 11.7% to 21.0 p/share (2021: 18.8 p/share)
    • Interim dividend of 8.4 p/share (H1 2021: 7.5 p/share) – 40% of full year expectation

Engineers at Cruachan Power Station

Progress with strategy in H1 2022

  • To be a global leader in sustainable biomass – targeting 8Mt of capacity and 4Mt of sales to 3rd parties by 2030
    • Addition of 0.4Mt of operational pellet production capacity
    • New Tokyo sales office opened July 2022
  • To be a global leader in negative emissions
    • BECCS – UK – targeting 8Mt of negative emissions by 2030
    • Planning application submitted and government consultation on GGR business models published with power BECCS business model consultation expected “during the summer”
    • BECCS – North America – targeting 4Mt of negative emissions by 2030
    • Ongoing engagement with policy makers, screening of regions and locations for BECCS
  • To be a leader in UK dispatchable, renewable power
    • >99% reduction in scope 1 and 2 emissions from generation since 2012
    • UK’s largest generator of renewable power by output – 11% of total
    • Optimisation of biomass generation and logistics to support security of supply at times of higher demand
    • Planning application submitted for 600MW expansion of Cruachan and connection agreement secured

Outlook for 2022

  • Expectations for full year Adjusted EBITDA unchanged from 6 July 2022 update which reflected optimisation of biomass generation and logistics to support UK security of supply this winter when demand is high, a strong pumped storage performance and agreement of a winter contingency contract for coal

Future positive – people, nature, climate

  • People
    • Diversity and inclusion programme – inclusive management, promoting social mobility via graduates, apprenticeships and work experience programmes
    • Continued commitment to STEM outreach programme

An apprentice working in the turbine hall at Drax Power Station, North Yorkshire

  • Nature and climate
    • Science-based sustainability policy fully compliant with current UK and EU law on sustainable sourcing and aligned with UN guidelines for carbon accounting
    • Biomass produced using sawmill and forest residuals, and low-grade roundwood, which often have few alternative markets and would otherwise be landfilled, burned or left to rot, releasing CO2 and other GHGs
    • Increase in sawmill residues used by Drax to produce pellets – 67% of total fibre (FY 2021: 62%)
    • 100% of woody biomass produced by Drax verified against SBP, SFI, FSC®(4) or PEFC Chain of Custody certification with third-party supplier compliance primarily via SBP certification

Operational review

Pellet Production – increased production, flexible operations to support UK generation, addition of 0.4Mt of capacity 

  • Adjusted EBITDA up 13% to £45 million (H1 2021: £40 million)
    • Pellet production up 54% to 2.0Mt (H1 2021: 1.3Mt) (including Pinnacle since 13 April 2021)
  • Addition of c.0.4Mt of new production capacity
    • Commissioning of Demopolis and Leola, expect to reach full production capacity in H2 2022
  • Total $/t cost of $146/t(5) – 2% increase on 2021 ($143/t(5))
    • Increase in utility costs in Q2-22 (>20% increase)
    • Fuel surcharge – barge and rail to port (> 10% increase)
    • Commissioning costs at Demopolis and Leola plants
    • Net reduction in other costs, inclusive of optimisation of supply chain to meet reprofiling of Generation
    • No material change in fibre costs
  • Areas of focus for further savings – wider range of sustainable biomass fibre, continued focus on operational efficiency and improvement, capacity expansion, innovation and technology
  • Continue to target final investment decision on up to 0.5Mt of new capacity in H2 2022

Generation – increased recognition of value of long-term security of supply from biomass and pumped storage

  • Adjusted EBITDA from continuing operations £205 million up 24% (H1 2021: £165 million)
    • Optimisation of biomass generation and logistics to support security of supply at times of higher demand
    • Summer – lower power demand, lower power generation and sale of reprofiled biomass
    • Winter – maximise biomass deliveries to support increased generation at times of higher demand
    • Four small, planned biomass outages completed in H1, supporting higher planned generation in H2-22
    • Strong portfolio system support performance (balancing mechanism, ancillary services and optimisation)
    • Higher cost of sales – logistics optimisation, biomass and system costs
  • Six-month extension of coal at request of UK government – winter contingency contract for security of supply
    • Closure of coal units in March 2023 following expiration of agreement with ESO at end of March 2023
    • Fixed fee and compensation for associated costs, including coal
    • Remain committed to coal closure and development of BECCS, with no change to expected timetable
  • As at 21 July 2022, Drax had 25.4TWh of power hedged between 2022 and 2024 on its ROC and hydro generation assets at an average price of £95.9/MWh, with a further 2.3TWh equivalent of gas sales (transacted for the purpose of accessing additional liquidity for forward sales from ROC units and highly correlated to forward power prices) plus additional sales under the CfD mechanism
Contracted power sales 21 July 2022202220232024
ROC (TWh(6))11.78.84.5
Average achieved £ per MWh87.298.3109.5
Hydro (TWh)0.30.1-
-Average achieved £ per MWh133.1242.0-
Gas hedges (TWh equivalent)(0.1)0.51.9
-Pence per therm361.0145.8135.0
Lower expected level of ROC generation in 2023 due to major planned outages on two units

Customers – renewable power under long-term contracts to high-quality I&C customers and decarbonisation products

  • Adjusted EBITDA of £24 million (H1 2021: £5 million loss) – continued improvement following impact of Covid-19
    • principally in the SME business
    • Includes benefit of excess contracted power sold back into merchant market
  • Continued development of Industrial & Commercial (I&C) portfolio
    • 9TWh of power sales – 21% increase compared to H1 2021 (5.7TWh)
    • Focusing on key sectors to increase sales to high-quality counterparties supporting generation route to market
    • Energy services to expand the Group’s system support capability and customer sustainability objectives
  • SME – increasingly stringent credit control in SME business to reflect higher power price environment

Other financial information

  • Total operating profit from continuing operations of £207 million (H1 2021: £84 million), including £130 million mark-to-market gain on derivative contracts and £27 million of exceptional costs
  • Total profit after tax from continuing operations of £148 million includes an £8 million non-cash charge from revaluing deferred tax balances following confirmation of UK corporation tax rate increases from 2023 (H1 2021: £6 million loss including a £48 million non-cash charge from revaluing deferred tax balances)
  • Capital investment of £60 million (H1 2021: £71 million) – primarily maintenance
    • Full year expectation of £290–£310 million, includes £120 million for Open Cycle Gas Turbine projects, £20 million BECCS FEED and site preparation, and £10 million associated with new pellet capacity, subject to final investment decision (FID)
  • Depreciation and amortisation of £121 million (H1: £89 million) reflects inclusion of Pinnacle for a full six months, plant upgrades and accelerated depreciation of certain pellet plant equipment in line with planned capital upgrades
  • Group cost of debt below 3.6%
  • Cash Generated from Operations £185 million (H1 2021: £138 million)
  • Net Debt of £1,101 million (31 December 2021: £1,044 million), including cash and cash equivalents of £288 million (31 December H1 2021: £317 million)
    • Continue to expect Net Debt to Adjusted EBITDA significantly below 2 times by end of 2022, reflecting optimisation of generation and logistics to deliver higher levels of power generation and cash flows in H2 2022

View complete half year report

View Investor Presentation

Webcast Live Event

Getting Britain ready for the next generation of energy projects

Key takeaways:

  • As the UK continues to expand its renewable capacity the cost of curtailing wind generation at times of low demand is increasing, adding £806 million to bills over the last two years.
  • Curtailment costs arise from the grid paying to turn down generation due to energy balancing or system balancing issues.
  • Long-duration storage, such as pumped storage hydro, offers a way to absorb excess wind power, reducing the cost of keeping the system balanced.
  • Drax’s plans to expand Cruachan Power Station would increase the amount of excess power it can absorb from 400 MW to over one gigawatt, and rapidly deliver the same amount back to the grid when needed.
  • New financial mechanisms, such as a cap and floor regime, are needed to enable investors to back capital-intensive, long-term projects that will save consumers and the grid millions.

Meeting big ambitions takes big actions. And there’re few ambitions as big, or as urgent, as achieving a net zero power sector by 2035.

This energy transition must mean more low carbon power sources and fewer fossil fuels. But delivering that future requires new ways of managing power, balancing the grid and a new generation of technologies, innovation, and thinking to make big projects a reality.

As the system evolves and more renewables, particularly wind, come online, the UK is forecast to need 10 times more energy storage to deliver power when wind-levels drop, as well as absorb excess electricity when supply outstrips demand, and to maintain grid stability. Pumped hydro storage offers a tried and tested solution, but with no new long-duration storage projects built for almost 40 years in the UK, the challenges of bringing long-term projects to fruition are less engineering than they are financial.

Drax’s plan to expand Cruachan Power Station to add as much as 600 megawatts (MW) of additional capacity will help support a renewable, more affordable, net zero electricity system. But government action is needed to unlock a new generation of projects that deliver electricity storage at scale.

Reigning in excess wind power

Wind is the keystone power source in the UK’s renewable ambitions. Wind capacity increased from 5.4 GW in 2010 to 25.7 GW in 2021 – enough to provide renewable power for almost 20 million homes – and the government aims to increase this to 50 GW by 2030.

However, wind comes with challenges: the volume of electricity being generated must always match the level of demand. If there is a spike in electricity demand when there are low wind-levels, other technologies, such as electricity storage or carbon-emitting gas power, are required to make up the shortfall.

Conversely, if there is too much wind power being generated and not enough demand for electricity the grid often has to pay windfarms to stop generating. This is known as wind curtailment and it’s becoming more expensive, growing from £300 million during 2020 to more than £500 million in 2021.

An independent report by Lane Clark & Peacock (LCP), by Drax, found that over the last two years curtailing wind power added £806 million to energy bills in Britain.

There can also be a carbon cost to curtailing wind power. As more intermittent renewables come onto the system the grid can become more unstable and difficult to balance. In such an event the National Grid is required to turn to fossil fuel plants, like gas generation, that can deliver balancing and ancillary services like inertia, voltage control and reserve power that wind and solar can’t provide.

“It’s lose-lose for everyone,” says Richard Gow, Senior Government Policy Manager at Drax. “Consumers are paying money to turn off wind and to turn up gas generation because there’re not enough sources of ancillary services on the system or renewable power can’t be delivered to where it’s needed.”

“Curtailment costs have spiked this year because of gas prices, and while they might dip in the next two or three years, curtailment costs are only ever going to increase. If there’s wind power on the system without an increase in storage, the cost of managing the system is only going to go up and up.”

Source: the LCP’s ‘Renewable curtailment and the role of long duration storage’ report, click to view/download here.

The proposed Cruachan 2 expansion would help the grid avoid paying to turn off wind farms by increasing the amount it would be able to absorb from 400 MW to over 1,000 MW, and rapidly deliver the same amount of zero carbon power back to the grid should wind levels suddenly drop or the grid need urgent balancing.

Adding this kind of capability is a huge engineering project, involving huge new underground caverns, tunnels and waterways carved out of the rock below Ben Cruachan. However, the challenge in such a project lies less with the scale of the engineering than with its financeability.

From blueprints to real change

The original Cruachan Power Station’s six-year construction period began in 1959. The work of digging into the mountainside was carried out by a team of 1,300 men, known affectionately as the Tunnel Tigers, armed with hand drills and gelignite explosives in an era before modern health and safety practices.

Engineer working at Cruachan Power Station

Expanding Cruachan in the 21st century will be quite a different, and safer process, and one that’s practically, straightforward.

“There is no reason why we physically couldn’t build Cruachan 2,” says Gow. “Detailed engineering work has indicated that this is a very feasible project. There’s no technological reason or physical constraint that would prevent us. It has a large upfront cost, and requires drilling into a mountain, but the challenge is much more on the financial, particularly securing the investment, side of the project.”

Pumped storage hydro facilities today generate their revenues from three different markets: the capacity market, where they receive a flat rate per kilowatt they deliver to the grid; the wholesale and balancing market, where they buy power to store when it’s abundant and cheap and sell it back to the grid when it’s needed, more valuable and used to support the Electricity System Operator in matching supply and demand on a second-by-second basis; and through ancillary services contracts, dedicated to specific stability services.

These available markets present challenges for ambitious, capital-intensive projects designed to operate at scale. With the exception of the capacity market, revenues from these markets are often volatile and difficult to forecast, with no long-term contracts available.

Sourcing the investment needed to build projects on the scale of Cruachan 2 requires mechanisms to attract investors comfortable with long project development lead times that offer stable, low risk, rates of return in the long-term.

Cap and floor

An approach that can provide sufficient certainty to investors that income will cover the cost of debt and unlock finance for new projects is known as a ‘cap and floor’ regime.

With cap and floor, a facility’s revenues are subject to minimum and maximum levels. If revenues are below the ‘floor’ consumers would top-up revenues, while earnings above the ‘cap’ would be returned to consumers. This means investors can secure upfront funding safe in the knowledge of revenue certainty in the long term, whilst also offering protection to consumers.

Such an approach won’t attract investors looking to make a fast buck, but the vital role that it could play in the ongoing future of the UK energy system offers a long-term, stable return. At the same time, the system would save both the grid and energy consumers hundreds of millions of pounds.

The cap and floor system is also not unique, with a similar approach currently used for interconnectors, the sub-marine cables that physically connect the UK’s energy system to nearby countries allowing the UK to trade electricity with them. This means investors are already familiar with cap and floor structures, how they operate and what kind of returns they can expect.

“It’s not just pumped storage hydro that this could apply to,” explains Gow. “There are other, different large-scale, long-duration storage technologies that this could also apply to.”

“It would give us revenue certainty so that we can invest to support the system and reduce the cost of curtailment while ensuring consumers get value for their money.”

The Turbine Hall inside Cruachan Power Station

Cruachan was originally only made possible through the advocacy and actions of MP and wartime Secretary of State for Scotland Tom Johnston. Then it was needed to help absorb excess generation from the country’s new fleet of nuclear power stations and release this to meet short term spikes in demand. Today it’s renewable wind the system must adapt to.

For the UK to continue to meet an ever-changing energy system the government must be prepared to act and enable projects at scale, that bring long-term transformation for a net zero future.

Updated expectations for full year 2022

RNS Number : 5930R
Drax Group plc
(“Drax” or the “Group”; Symbol:DRX)

In response to increased pressure on European gas markets and associated concerns about electricity security of supply in the UK this winter, Drax continues to optimise its biomass generation and logistics. To accomplish this Drax is reprofiling biomass generation and supply from the summer to the winter, enabling it to provide high levels of reliable renewable electricity generation in the UK throughout the winter when demand is likely to be higher. 

The Group also expects to provide additional support from pumped storage hydro at Cruachan Power Station, building on a strong year to date performance, which reflects a high level of system support activities.

Separately, at the request of the UK Government, Drax has now entered into an agreement with National Grid – in its capacity as the electricity systems operator – pursuant to which its two coal-fired units at Drax Power Station will remain available to provide a “winter contingency” service to the UK power system from October 2022 until the end of March 2023. The units will not generate commercially for the duration of the agreement and only operate if and when instructed to do so by National Grid.

Under the terms of the agreement, Drax will be paid a fee for the service and compensated for costs incurred, including coal costs, in connection with the operation of the coal units in accordance with the agreement.

Full year expectations

Reflecting these factors, Drax now expects that full year Adjusted EBITDA(1) for 2022 will be slightly above the top of the range of analyst expectations(2), subject to continued good operational performance.

Notes:

(1)   Earnings before interest, tax, depreciation, amortisation, excluding the impact of exceptional items and certain remeasurements.

(2)   As of 5 July 2022, analyst consensus for 2022 Adjusted EBITDA was £613 million, with a range of £584-£635 million. The details of this company collected consensus are displayed on the Group’s website.

https://www.drax.com/investors/announcements-events-reports/presentations/

Enquiries:

Drax Investor Relations: Mark Strafford

+44 (0) 7730 763 949

Media:

Drax External Communications: Ali Lewis

+44 (0) 7712 670 888

Website: www.Drax.com

END

Six-month extension of coal operations at request of UK Government

View of Drax Power Station

RNS Number : 5919R
Drax Group plc
(“Drax” or the “Group”; Symbol:DRX)

In response to increased pressure on European gas markets and associated concerns about electricity security of supply in the UK this winter, the UK Government has asked owners of legacy coal-fired generation assets, including Drax, to work together with National Grid to temporarily extend the life of their coal generation assets to March 2023.

At the request of the UK Government, Drax has now entered into an agreement with National Grid – in its capacity as the electricity systems operator – pursuant to which its two coal-fired units at Drax Power Station will remain available to provide a “winter contingency” service to the UK power system from October 2022 until the end of March 2023. The units will not generate commercially for the duration of the agreement and only operate if and when instructed to do so by National Grid.

Under the terms of the agreement, Drax will be paid a fee for the service and compensated for costs incurred, including coal costs, in connection with the operation of the coal units in accordance with the agreement.

Will Gardiner, Drax’s Group CEO, said:

“At the request of the UK Government, Drax has agreed to delay the planned closure of its two coal-fired units and help bolster the UK’s energy security this winter.

“Drax has played a central role in ensuring Britain’s energy security over several decades and our workforce is proud to be providing this critical support to the UK energy system.

“Drax is the UK’s largest generator of renewable power, producing enough reliable, renewable electricity for 5 million households from our sustainable biomass and hydro operations and we remain committed to delivering a coal-free future.

“The UK’s long-term energy security depends on investment in innovative green technologies like bioenergy with carbon capture and storage (BECCS), which provides reliable, renewable power whilst permanently removing CO2from the atmosphere.

“Drax aims to invest billions of pounds developing BECCS in the UK by 2030, provided that the UK Government has in place policies to support the feasibility and delivery of negative emissions technologies, which it has committed to developing this year.”

Drax ended commercial operations on its two-remaining coal-fired generation units in March 2021, and formal closure was planned for September 2022, following the fulfilment of the Group’s Capacity Market obligations on these units.

A limited six-month extension to March 2023 is not expected to result in a material level of coal generation(1). Throughout 2021, coal-fired generation accounted for 3% of the Group’s generation output and in the first three months of 2022, this was less than 1%, with the balance from renewables – sustainable biomass, pumped storage and hydro.

The decision to end coal generation supports the Group’s purpose of enabling a zero-carbon, lower-cost energy future and the transition to a flexible, renewable generation model. This has led to a more than 95% reduction in the Group’s Scope 1 and Scope 2 carbon emissions since 2012 and enabled Drax to become the UK’s largest source of renewable electricity by output.

Investment in renewables

To date, Drax has invested over £2 billion in renewables and UK security of supply, with options for a further £3 billionto be invested this decade, subject to the right investment environment. These investment options include the development of negative emissions technologies and pumped storage, which the UK Government has said are necessary to decarbonise the electricity generation sector by 2035 and reach net zero by 2050.

No expected impact on BECCS

Drax continues to expect to take a final investment decision on its Drax Power Station BECCS project in 2024, subject to the right investment environment and, in 2022, is investing incrementally in the development of this option. This includes the removal of certain coal infrastructure. A six-month extension of coal is not expected to impact on the timing of a final investment decision or intended commissioning date for the project. Site preparation works for BECCS are ongoing and will accelerate following formal closure of the coal units in March 2023.

The UK Government recognises the important role which BECCS has to play in delivering net zero, requiring at least 5Mt of CO2 per year from BECCS and other engineered Greenhouse Gas Removals (GGR) by 2030. To support this ambition, in July 2022, the UK Government published a consultation on engineered GGR’s. Separately, in order to develop the financial model required to support BECCS – and reflective of its advanced technological readiness and the co-benefits of both power and negative emissions – the UK Government is expected to publish a power BECCS business model consultation during summer 2022.

The Group believes that negative emissions and BECCS represent a trillion-dollar global market opportunity and is separately continuing to develop options to deliver 4Mt of negative CO2 emissions each year from new-build BECCS outside of the UK by 2030.

Notes:

(1)   Drax will work with National Grid to source up to approximately 400,000 tonnes of additional coal (which together with current stocks is enough for c.1TWh of electricity generation) to deliver the service, and will only operate if and when instructed to do so by National Grid.

Enquiries:

Drax Investor Relations: Mark Strafford

+44 (0) 7730 763 949

Media:

Drax External Communications: Ali Lewis

+44 (0) 7712 670 888

Website: www.Drax.com

END

An introduction to carbon accounting

Key takeaways:

  • Tracking, reporting, and calculating carbon emissions are a key part of progressing countries, industries, and companies towards net zero goals.
  • As a newly established discipline, carbon accounting still lacks standardisation and frameworks in how emissions are tracked, reduced, and mitigated.
  • The main carbon accounting standard used by businesses is the Greenhouse Gas (GHG) Protocol, which lays out three ‘Scopes’ businesses should report and act upon.
  • Carbon accounting evolves from reporting in the use of goals and timeframes in which targets are met.
  • Timeframes are crucial in the deployment of technologies like carbon capture, removals, and achieving net zero.

How can countries and companies find a route to net zero emissions? Many organisations, countries and industries have pledged to balance their emissions before mid-century. They intend to do this through a combination of cutting emissions and removing carbon from the atmosphere.

Tracking and quantifying emissions, understanding output, reducing them, and setting tangible targets that can be worked towards are all central to tackling climate change and reducing greenhouse gas emissions – especially when it comes to carbon dioxide (CO2). Emissions and energy consumption reporting is already common practice and compulsory for businesses over a certain size in the UK. However, carbon accounting takes this a step further.

“Carbon reporting is a statement of physical greenhouse gas emissions that occur over a given period,” explains Michael Goldsworthy, Head of Climate Change and Carbon Strategy at Drax. “Carbon accounting relates to how those emissions are then processed and counted towards specific targets. The methodologies for calculating emissions and determining contributions against targets may then have differing rules depending on which framework or standard is being reported against.”

Carbon accounting tools can help companies and counties understand their carbon footprint – how much carbon is being emitted as part of their operations, who is responsible for them, and how they can be effectively mitigated.

Like how financial accounting may seek to balance a company’s books and calculate potential profit, carbon accounting seeks to do the same with emissions, tracking what an entity emits, and what it reduces, removes, or mitigates. Carbon accounting is, therefore, crucial in understanding how countries and companies can contribute to reaching net zero.

A new space

How different organisations, countries and industries approach carbon accounting is still an evolving process.

“It’s as complex as financial accounting, but with financial accounting, there’s a long standing industry that relies on well-established practices and principles. Carbon accounting by contrast is such a new space,” explains Goldsworthy.

Regardless of its infancy, businesses and countries are already implementing standardised approaches to carbon accounting. Regulations such as emissions trading schemes and reporting systems, such as Streamlined Energy and Carbon Reporting (SECR) and the Taskforce on Climate Related Financial Disclosure (TCFD), are beginning to deliver some degree of consistency in businesses’ carbon reporting.

Other standards such as the GHG Protocol have sought to provide a standardised basis for corporate reporting and accounting. Elsewhere, voluntary carbon markets (e.g. carbon offsets) have also evolved to allow transferral of carbon reductions or removals between businesses, providing flexibility to companies in delivering their climate commitments.

The challenge is in aligning these frameworks so that they work together. For example, emissions within a corporate inventory or offset programme must be accounted for in a way that is consistent with a national inventory.

To date, these accounting systems have evolved independently with different rules and methodologies. Beginning to implement detailed carbon accounting, upon which emissions reductions and removals can be based, requires standardised understanding of what they are and where they come from.

Reporting and tackling Scope One, Two, and Three emissions

The main carbon accounting standard used by businesses is the Greenhouse Gas (GHG) Protocol. This voluntary carbon reporting standard can be used by countries and cities, as well as individual companies globally.

The GHG protocol categorises emissions in three different ‘scopes’, called Scope 1, Scope 2, and Scope 3. Understanding, measuring, and reporting these is a key factor in carbon accounting and can drive meaningful emissions reduction and mitigation.

Scope One – Direct emissions

Scope One emissions are those that come as a direct result of a company or country’s activities. These can include fuel combustion at a factory’s facilities, for example, or emissions from a fleet of vehicles.

Scope One emissions are the most straightforward for an organisation to measure and report, and easier for organisations to directly act on.

Scope Two – Indirect energy emissions

Scope Two emissions are those which come from the generation of energy an organisation uses. These can include emissions form electricity, steam, heating, and cooling.

A business may buy electricity, for example, from an electricity supplier, which acquires power from a generator. If that generator is a fossil-fuelled power station the energy consumer’s Scope Two emissions will be greater than if it buys power from a renewable electricity supplier or generates its own renewable power.

The ability to change energy suppliers makes Scope Two relatively straightforward for organisations to act on, assuming renewable energy sources are available in the area.

Scope Three – All other indirect emissions

Scope Three is much broader. It covers upstream and downstream lifecycle emissions of products used or produced by a company, as well as other indirect emissions such as employee commuting and business travel emissions.

Identifying and reducing these emissions across supply and value chains can be difficult for businesses with complex supply lines and global distribution networks. They are also hard for companies to directly influence.

Add in factors like emissions mitigations or offsetting, and the carbon accounting can quickly become much more complex than simply reporting and reducing emissions that occur directly from a company’s activities. Nevertheless, these full-system overviews and whole-product lifecycle accounting are crucial to understanding the true impact of operations and organisations, and to reach climate goals.

Working to timelines

Setting goals with defined timelines and the development of rules that ensure consistent accounting is also crucial to implementing effective climate change mitigation frameworks throughout the global economy. Consider the UK’s aim to be net zero by 2050, or Drax’s ambition to be net negative by 2030, as goals with set timelines.

For many technologies, the time scales over which targets are set have added relevance. There are often upfront emissions to account for and operational emissions that may change over time. Take for example an electric vehicle: the climate benefit will be determined by emissions from construction and the carbon intensity of the electricity used to power it.

A timeline of BECCS at Drax [click to view/download]

Looking at a brief snapshot at the beginning of its life, say the first couple of years, might not show any climate benefit compared to a vehicle using an internal combustion engine. Over the lifetime of the vehicle, however, meaningful emissions savings may become clear – especially if the electricity powering the vehicle continues to decarbonise over time.

This provides a challenge when setting carbon emissions targets. Targets set too far in the future potentially risk inaction in the short term, while targets set over short periods risk disincentivising technologies that have substantial long-term mitigation potential. 

Delivering net zero

Some greenhouse gas emissions will be impossible to fully abate, such as methane and nitrous oxide emissions from agriculture, while other sectors, like aviation, will be incredibly difficult to fully decarbonise. This makes carbon removal technologies all the more critical to ensuring net zero is achieved.

Technologies such as bioenergy with carbon capture and storage (BECCS) – which combines low-carbon, biomass-fuelled renewable power generation with carbon capture and storage (CCS) to permanently remove emissions from the atmosphere – are already under development.

However, it is imperative that such technologies are accounted for using robust approaches to carbon accounting, ensuring all emission and removals flows across the value chain are accurately calculated in accordance with best scientific practice. In the case of BECCS, it’s vital that not only are emissions from processing and transporting biomass considered, but also its potential impact on the land sector.

Forests from which biomass is sourced will be managed for a variety of reasons, such as mitigating natural disturbance, delivering commercial returns, and preserving ecosystems. Accurate accounting of these impacts is therefore key to ensuring such technologies deliver meaningful reductions in atmospheric CO2within timeframes guided by science.

Accounting for net zero

While carbon accounting is crucial to reaching a true level of net zero in the UK and globally, where residual emissions are balanced against removals, the practice should not be used exclusively to deliver numerical carbon goals.

“To deliver net zero, it’s vital we have robust carbon accounting systems and targets in place, ensuring we reduce fossil emissions as far as possible while also incentivising carbon removal solutions,” says Goldsworthy.

“However, many removal solutions rely on the natural world and so it is critical that ecosystems are not only valued on a carbon basis but consider other environmental factors such as biodiversity as well.”

Strong performance in Q1 2022, continuing to play an important role in energy security and global decarbonisation

RNS Number : 4455J
Drax Group plc
(“Drax” or the “Group”; Symbol:DRX)

Trading and Operational Highlights

  • Strong system support performance during the first three months of 2022
  • Increase in value of contracted power prices 2022 – 2024
  • >99% of generation from renewables – sustainable biomass, hydro and pumped storage
  • 400Kt of new biomass pellet production capacity commissioned in US southeast

Financial Highlights

  • 2022 Adjusted EBITDA(1) – around the top end of current range of analyst expectations(2)
    • Expect to be significantly below 2x net debt to Adjusted EBITDA by the end of 2022
  • Final dividend of 11.3 pence to be paid subject to shareholder approval at today’s AGM
    • Total dividend for 2021 – 18.8 pence per share (2020: 17.1 pence per share)

Drax CEO, Will Gardiner [click to view/download]

Drax CEO Will Gardiner said:

“In the first quarter of 2022 we delivered a strong system support performance as our reliable, renewable electricity continued to support UK energy security and helped to keep the lights on for millions of British homes and businesses.

“We advanced our strategy to increase biomass pellet production, with another 400Kt of capacity commissioned from two new pellet plants in the US. We also progressed the engineering design work for our UK BECCS project, which will deliver negative emissions for the UK and pioneer BECCS technology at scale. BECCS is a vital carbon removals technology that the UN’s IPCC says is needed globally to achieve net zero.

“With the right government support, Drax is ready to invest £3bn this decade in delivering vital renewable energy technologies including BECCS, a carbon removal technology that is cost-effective but also the only one that generates reliable, renewable electricity while removing millions of tonnes of CO2 from the atmosphere.”

Pellet Production

In April 2022, the Group completed the commissioning of its 360Kt plant at Demopolis, Alabama and its 40Kt satellite plant in Leola, Arkansas. The Group is also currently constructing a second 40Kt satellite plant at Russellville, Arkansas, allowing greater utilisation of lower cost sawmill residues whilst leveraging on existing infrastructure in the US southeast.

Leola satellite plant under construction [February 2022]

Once at full capacity these developments, alongside incremental capacity expansions at existing sites, will increase nameplate production capacity to around 5Mt p.a. Over 2Mt p.a. of production is contracted to high-quality third-parties under long-term contracts, with the balance available to Drax to fulfil its own-use requirements.

Strong demand for forest products in construction and manufacturing markets continues to support good fibre residue availability with no material change in fibre cost. Drax notes an incremental increase in transportation costs in North America principally related to truck driver shortages and haulage costs.

The Group continues to target a Final Investment Decision (FID) on up to 1Mt of new capacity in 2022 as part of its plans to increase total pellet production capacity to 8Mt by 2030.

Generation

In the UK, the Group’s biomass, hydro and pumped storage assets have continued to play an important role in security of supply, providing stability to the UK power system at a time when higher gas prices and interconnector availability have placed the system under increased pressure.

To maximise renewable output at times of high demand, the Group is continuing to optimise biomass generation across all four biomass units at Drax Power Station, contributing to an increase in average achieved power prices.

The current power price environment increases the importance of appropriate investment to ensure good operational performance and availability, and, in March and April 2022, two biomass units underwent planned maintenance outages. The unit’s contracted positions in this period were bought back and the generation reprofiled, with no net change in output over the ROC compliance period.

Drax’s two legacy coal units were called into the Balancing Mechanism by the system operator in January for limited operations to support security of supply. These short-term measures helped to stabilise the power system during periods of system stress and did not result in any material increase in the Group’s total carbon emissions.

Drax continues to expect to formally close these two legacy coal units following the fulfilment of their Capacity Market obligations in September 2022 but remains committed to supporting security of supply in the UK. Drax has recently been asked by the UK Government to consider options for a limited extension of its coal operations and this remains under review.

Generation contracted power sales

The Group has continued to add to its forward power sales book. As at 22 April 2022, Drax had 22.2TWh of power hedged between 2022 and 2024 on its ROC and hydro generation assets at an average price of £78.1/MWh.

A further 1.8TWh equivalent of gas hedges have been contracted in 2023 and 2024 for the purpose of accessing additional liquidity for forward power sales from the ROC units. These contracts are highly correlated to forward power prices.

Due to the optimisation of biomass generation in 2022, to support increased generation at times of high demand, CfD output will be lower than historic average, with ROC unit output higher.

Contracted power sales 22 April 2022202220232024
ROC (TWh(3))11.17.73.1
- Average achieved £ per MWh74.979.084.0
Hydro (TWh)0.20.1-
- Average achieved £ per MWh107.0173.1-
Gas hedges (TWh equivalent)(4)-0.51.3
Pence per therm-108.4118.5
CfD(3/5) typical annual output c.5TWh and current strike price £126.4/MWh

Since the Group’s last update on 24 February 2022, incremental power sales from the ROC units total 1.8TWh across 2022, 2023 and 2024.

War in Ukraine

Cooling towers at Drax Power Station light up to show support for Ukraine [March 2022]

Drax previously sourced a small volume of Russian and Belarussian biomass, which it has now removed from its supply chain. The biomass that Drax uses comes from stable, sustainable markets in North America and Europe and is sourced under long-term fixed formula contracts.

The removal of Russian biomass cargoes from European supply chains has led to higher prices and lower availability in the small European spot market, adding incremental costs and limiting the potential to source additional cargoes to support incrementally higher levels of generation in 2022.

Full year expectations

Reflecting these factors, the Group now expects that full year Adjusted EBITDA for 2022 will be around the top of the range of analyst expectations, subject to continued good operational performance.

Reflecting the improved outlook for Adjusted EBITDA the Group expects net debt to Adjusted EBITDA to be significantly below 2x by the end of 2022.

Bioenergy Carbon Capture and Storage (BECCS)

During 2022 Drax is investing incremental capital expenditure and development expenditure into BECCS, including continuing a Front-End Engineering Design study at Drax Power Station.

Drax continues to expect to take a FID in 2024 and expects the UK Government to set out the process for selection and support for individual BECCS projects, such as BECCS at Drax Power Station, during 2022.

The development of BECCS in the UK is supported by the Group’s plans to invest in the expansion of its biomass pellet production to deliver security of supply for the biomass volumes required for BECCS, which are expected to be underpinned by long-term contracts reflecting the market price of biomass.

The Group is also continuing to develop options to deliver 4Mt of negative CO2 emissions each year from new-build BECCS outside of the UK by 2030 and is currently developing models for North American and European markets.

Other

The Group is continuing to assess operational and strategic solutions to support the development of its SME(6) supply business.

In March 2022, Drax signed a development agreement with EPC contractor Mytilineos for the development of three Open Cycle Gas Turbine (OCGT) developments.

At the full year results in February 2022 Drax noted it would invest up to £100 million in 2022 to fulfil obligations under the Capacity Market agreements, but was continuing to evaluate options for its OCGT developments, including their sale. Drax expects that any capital invested in 2022 will be recovered in the event of a sale.

Enquiries:

Drax Investor Relations: Mark Strafford
+44 (0) 1757 612 491

Media:

Drax External Communications: Ali Lewis
+44 (0) 7712 670 888
Website: www.drax.com

END

Why and how is carbon dioxide transported?

What is carbon transportation?

Carbon transportation is the movement of carbon from one place to another. In nature, carbon moves through the carbon cycle. In industries like energy, however, carbon transportation refers to the physical transfer of carbon dioxide (CO2) emissions from the point of capture to the point of usage or storage.

Why does carbon need to be transported?

Anthropogenic (man-made) CO2 released in processes like power generation leads to the direct increase of CO2 in the atmosphere and contributes to global warming.

However, these emissions can be captured as part of carbon capture and storage (CCS). The CO2 is then transported for safe and permanent storage in geological formations deep underground.

Capturing and storing CO2 prevents it from entering the atmosphere and contributing to global warming. Processes that can deliver negative emissions – such as bioenergy with carbon capture and storage (BECCS) and direct air capture and storage (DACS) – aim to permanently remove CO2 from the atmosphere through CCS.

In CCS, carbon must be transported from the site where it’s captured to a site where it can be permanently stored. This means it needs to travel from a power station or factory to a geological formation like a saline aquifer or depleted oil and gas reservoirs.

As of September 2021, there were 27 operational CCS facilities around the world, with the combined capacity to capture around 40 million tonnes per annum (Mtpa) of CO2. It’s estimated that the UK alone has 70 billion tonnes of potential CO2 storage space in sandstone rock formations under the North Sea.

How is carbon transported?

CO2 can be transported via trucks or ships, but the most common and efficient method is by pipeline. Moving gases of any kind through pipelines is based on pressure. Gases travel from areas of high pressure to areas of low pressure. Compressing gas to a high pressure allows it to flow to other locations.

Gas pipelines are common all around the world, including those transporting CO2. In the US there are, for instance, more than 50 CO2 pipelines – covering around 6,500 km and transporting approximately 68 million tonnes of CO2 a year.

Gas takes up less volume when it’s compressed, and even less when it is liquefied, solidified, or hydrated. Therefore, before being transported, captured CO2 is often compressed and liquefied until it becomes a supercritical fluid.

In a supercritical state, CO2 has the density of a liquid but the viscosity (thickness) of a gas and is, therefore, easier to transport through pipelines. It’s also 50-80% less dense than water, with a viscosity that is 100 times lower than liquid.

This means it can be loaded onto ships in greater quantities and that there is less friction when it’s moving through pipes and, subsequently, into geological storage sites.

How safe is it to transport carbon?

It’s no riskier to transport CO2 via pipeline or ship than it is to transport oil and natural gas, and existing oil and natural gas pipelines can be repurposed to transport CO2.

To enable the safe use of CO2 pipelines, CCS projects must ensure captured CO2 complies with strict purity and temperature specifications, as well as making sure CO2 is dry and free from impurities that could impact pipelines’ operations.

Whilst there are a growing number of CCS transport systems around the world, CCS is still is a relatively new field but research is underway to identify best practises, materials and technologies to optimise the process. This includes research around potential risks and techniques for leak mitigation and remediation.

In the UK, the Health and Safety Executive regulates health, safety, and integrity issues for all natural gas pipelines, which are covered by legislation. The legislation ensures the safety of pipelines, pressure systems and offshore installations and can serve as a strong foundation for CO2 transport regulation.

Fast facts

Go deeper